OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 4 — Feb. 24, 2014
  • pp: 4235–4246

Optical damage threshold of Au nanowires in strong femtosecond laser fields

Adam M. Summers, Adam S. Ramm, Govind Paneru, Matthias F. Kling, Bret N. Flanders, and Carlos A. Trallero-Herrero  »View Author Affiliations


Optics Express, Vol. 22, Issue 4, pp. 4235-4246 (2014)
http://dx.doi.org/10.1364/OE.22.004235


View Full Text Article

Enhanced HTML    Acrobat PDF (2037 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Ultrashort, intense light pulses permit the study of nanomaterials in the optical non-linear regime. Non-linear regimes are often present just below the damage threshold thus requiring careful tuning of the laser parameters to avoid melting the materials. Detailed studies of the damage threshold of nanoscale materials are therefore needed. We present results on the damage threshold of gold (Au) nanowires when illuminated by intense femtosecond pulses. These nanowires were synthesized via the directed electrochemical nanowire assembly (DENA) process in two configurations: (1) free-standing Au nanowires on tungsten (W) electrodes and (2) Au nanowires attached to fused silica slides. In both cases the wires have a single-crystalline structure. For 790 nm laser pulses with durations of 108 fs and 32 fs at a repetition rate of 2 kHz, we find that the free-standing nanowires melt at intensities close to 3 TW/cm2 (194 mJ/cm2) and 7.5 TW/cm2 (144 mJ/cm2), respectively. The Au nanowires attached to silica slides melt at slightly higher intensities, just above 10 TW/cm2 (192 mJ/cm2) for 32 fs pulses. Our results can be explained with an electron-phonon interaction model that describes the absorbed laser energy and subsequent heat conduction across the wire.

© 2014 Optical Society of America

OCIS Codes
(320.2250) Ultrafast optics : Femtosecond phenomena
(320.7120) Ultrafast optics : Ultrafast phenomena
(320.7130) Ultrafast optics : Ultrafast processes in condensed matter, including semiconductors

ToC Category:
Materials

History
Original Manuscript: November 18, 2013
Revised Manuscript: January 29, 2014
Manuscript Accepted: February 7, 2014
Published: February 18, 2014

Citation
Adam M. Summers, Adam S. Ramm, Govind Paneru, Matthias F. Kling, Bret N. Flanders, and Carlos A. Trallero-Herrero, "Optical damage threshold of Au nanowires in strong femtosecond laser fields," Opt. Express 22, 4235-4246 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-4-4235


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311, 189–193 (2006). [CrossRef] [PubMed]
  2. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, a. S. Zibrov, P. R. Hemmer, H. Park, M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450, 402–406 (2007). [CrossRef] [PubMed]
  3. M. S. Tame, K. R. McEnery, Ş. K. Özdemir, J. Lee, S. A. Maier, M. S. Kim, “Quantum plasmonics,” Nat. Phys. 9, 329–340 (2013). [CrossRef]
  4. K. J. Savage, M. M. Hawkeye, R. Esteban, A. G. Borisov, J. Aizpurua, J. J. Baumberg, “Revealing the quantum regime in tunnelling plasmonics,” Nature 491, 574–577 (2012). [CrossRef] [PubMed]
  5. M. I. Stockman, “Nanoplasmonics: past, present, and glimpse into future,” Opt. Express 19, 22029–22106 (2011). [CrossRef] [PubMed]
  6. J. Leuthold, C. Hoessbacher, S. Muehlbrandt, A. Melikyan, M. Kohl, C. Koos, W. Freude, V. Dolores-Calzadilla, M. Smit, I. Suarez, J. Martínez-Pastor, E. Fitrakis, I. Tomkos, “Light on a wire,” Opt. Photonics News 24, 28–35 (2013). [CrossRef]
  7. A. Schiffrin, T. Paasch-Colberg, N. Karpowicz, V. Apalkov, D. Gerster, S. Mühlbrandt, M. Korbman, J. Reichert, M. Schultze, S. Holzner, J. V. Barth, R. Kienberger, R. Ernstorfer, V. S. Yakovlev, M. I. Stockman, F. Krausz, “Optical-field-induced current in dielectrics,” Nature 493, 70–74 (2013). [CrossRef]
  8. M. Schultze, E. M. Bothschafter, A. Sommer, S. Holzner, W. Schweinberger, M. Fiess, M. Hofstetter, R. Kienberger, V. Apalkov, V. S. Yakovlev, M. I. Stockman, F. Krausz, “Controlling dielectrics with the electric field of light,” Nature 493, 75–78 (2013). [CrossRef]
  9. M. Krüger, M. Schenk, P. Hommelhoff, “Attosecond control of electrons emitted from a nanoscale metal tip,” Nature 475, 78–81 (2011). [CrossRef] [PubMed]
  10. G. Herink, D. R. Solli, M. Gulde, C. Ropers, “Field-driven photoemission from nanostructures quenches the quiver motion,” Nature 483, 190–193 (2012). [CrossRef] [PubMed]
  11. S. Zherebtsov, T. Fennel, J. Plenge, E. Antonsson, I. Znakovskaya, A. Wirth, O. Herrwerth, F. Süßmann, C. Peltz, I. Ahmad, S. A. Trushin, V. Pervak, S. Karsch, M. J. J. Vrakking, B. Langer, C. Graf, M. I. Stockman, F. Krausz, E. Rühl, M. F. Kling, “Controlled near-field enhanced electron acceleration from dielectric nanospheres with intense few-cycle laser fields,” Nat. Phys. 7, 656–662 (2011). [CrossRef]
  12. P. Dombi, A. Hörl, P. Rácz, I. Márton, A. Trügler, J. R. Krenn, U. Hohenester, “Ultrafast strong-field photoemission from plasmonic nanoparticles,” Nano Lett. 13, 674–678 (2013). [CrossRef] [PubMed]
  13. P. M. Nagel, J. S. Robinson, B. D. Harteneck, T. Pfeifer, M. J. Abel, J. S. Prell, D. M. Neumark, R. A. Kaindl, S. R. Leone, “Surface plasmon assisted electron acceleration in photoemission from gold nanopillars,” Chem. Phys. 414, 106–111 (2013). [CrossRef]
  14. M. Durach, A. Rusina, M. F. Kling, M. I. Stockman, “Predicted ultrafast dynamic metallization of dielectric nanofilms by strong single-cycle optical fields,” Phys. Rev. Lett. 107, 086602 (2011). [CrossRef] [PubMed]
  15. V. Apalkov, M. I. Stockman, “Theory of dielectric nanofilms in strong ultrafast optical fields,” Phys. Rev. B 86, 165118 (2012). [CrossRef]
  16. V. Apalkov, M. I. Stockman, “Metal nanofilm in strong ultrafast optical fields,” arXiv:1209.2245 (2012).
  17. H. Inouye, K. Tanaka, I. Tanahashi, K. Hirao, “Ultrafast dynamics of nonequilibrium electrons in a gold nanoparticle system,” Phys. Rev. B 57, 11334–11340 (1998). [CrossRef]
  18. P. Grua, J. Morreeuw, H. Bercegol, G. Jonusauskas, F. Vallée, “Electron kinetics and emission for metal nanoparticles exposed to intense laser pulses,” Phys. Rev. B 68, 035424 (2003). [CrossRef]
  19. G. Baffou, H. Rigneault, “Femtosecond-pulsed optical heating of gold nanoparticles,” Phys. Rev. B 84, 035415 (2011). [CrossRef]
  20. N. Del Fatti, A. Arbouet, F. Vallée, “Femtosecond optical investigation of electron–lattice interactions in an ensemble and a single metal nanoparticle,” Appl. Phys. B 84, 175–181 (2006). [CrossRef]
  21. L. Liu, P. Peng, A. Hu, G. Zou, W. W. Duley, Y. N. Zhou, “Highly localized heat generation by femtosecond laser induced plasmon excitation in Ag nanowires,” Appl. Phys. Lett. 102, 073107 (2013). [CrossRef]
  22. B. Ozturk, B. N. Flanders, D. R. Grischkowsky, T. D. Mishima, “Single-step growth and low resistance interconnecting of gold nanowires,” Nanotechnology 18, 175707 (2007). [CrossRef]
  23. D. Strickland, G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56, 219–221 (1985). [CrossRef]
  24. B. N. Flanders, “Directed electrochemical nanowire assembly: Precise nanostructure assembly via dendritic solidification,” Mod. Phys. Lett. B 26, 1130001 (2012). [CrossRef]
  25. G. Nash, M. E. Glicksman, “Capillarity-limited steady-state dendritic growth,” Acta Metall. 22, 1283 (1974). [CrossRef]
  26. D. A. Kessler, J. Koplik, H. Levine, “Pattern selection in fingered growth phenomena,” Adv. Phys. 37, 255–339 (1988). [CrossRef]
  27. I. Talukdar, B. Ozturk, T. D. Mishima, B. N. Flanders, “Directed growth of single crystal indium wires,” Appl. Phys. Lett. 88, 221907 (2006). [CrossRef]
  28. G. Paneru, B. N. Flanders, “Complete reconfiguration of dendritic gold,” Nanoscale 6, 833–841 (2013). [CrossRef] [PubMed]
  29. P. Thapa, B. Ackerson, D. R. Grischkowsky, B. N. Flanders, “Directional growth of metallic and polymeric nanowires,” Nanotechnology 20, 235307 (2009). [CrossRef] [PubMed]
  30. C. Trallero-Herrero, T. C. Weinacht, “Transition from weak- to strong-field coherent control,” Phys. Rev. A 75, 063401 (2007). [CrossRef]
  31. J.-Y. Bigot, J.-C. Merle, O. Cregut, A. Danuois, “Electron dynamics in copper metalic nanoparticles probed with femtosecond optical pulses,” Phys. Rev. Lett. 75, 4702–4705 (1995). [CrossRef] [PubMed]
  32. G. Easley, “Generation of nonequilibrium electron and lattice temperatures in copper by picosecond laser pulses,” Phys. Rev. B 33, 2144–2145 (1986). [CrossRef]
  33. Z. Lin, L. Zhigilei, V. Celli, “Electron-phonon coupling and electron heat capacity of metals under conditions of strong electron-phonon nonequilibrium,” Phys. Rev. B 77, 075133 (2008). [CrossRef]
  34. S. I. Anisimov, B. Kapeliovich, T. Perel’man, “Electron emission from metal surfaces exposed to ultrashort laser pulses,” Sov. Phys. JETP 39, 375–377 (1975).
  35. D. R. Lide, CRC Handbook of Chemistry and Physics, 82nd ed. (CRC, 1993),
  36. W. Benenson, Handbook of Physics (Springer, 2000).
  37. E. D. Palik, Handbook of Optical Constants of Solids, 74th ed. (Academic, 1985).
  38. W. S. Fann, R. Storz, H. W. K. Tom, “Electron thermalization in gold,” Phys. Rev. B 46, 13592–13595 (1992). [CrossRef]
  39. MATLAB, version 7.14 (R2012a) (The MathWorks Inc., 2012).
  40. C.-H. Zhang, U. Thumm, “Attosecond photoelectron spectroscopy of metal surfaces,” Phys. Rev. Lett. 102, 123601 (2009). [CrossRef] [PubMed]
  41. A. Cavalieri, N. Müller, T. Uphues, V. S. Yakovlev, A. Baltuska, B. Horvath, B. Schmidt, L. Blümel, R. Holzwarth, S. Hendel, M. Drescher, U. Kleineberg, P. M. Echenique, R. Kienberger, F. Krausz, U. Heinzmann, “Attosecond spectroscopy in condensed matter,” Nature 449, 1029–1032 (2007). [CrossRef] [PubMed]
  42. J. M. Dahlstrom, A. L’Huillier, A. Maquet, “Introduction to attosecond delays in photoionization,” J. Phys. B 45, 183001 (2012). [CrossRef]
  43. S. Hankin, D. Villeneuve, P. Corkum, D. Rayner, “Intense-field laser ionization rates in atoms and molecules,” Phys. Rev. A 64, 013405 (2001). [CrossRef]
  44. M. T. Hassan, A. Wirth, I. Grguras, A. Moulet, T. T. Luu, J. Gagnon, E. Goulielmakis, “Invited article: Attosecond photonics: Synthesis and control of light transients,” Rev. Sci. Instrum. 83, 111301 (2012). [CrossRef] [PubMed]
  45. S.-W. Huang, G. Cirmi, J. Moses, K.-H. Hong, S. Bhardwaj, J. R. Birge, L.-J. Chen, I. V. Kabakova, E. Li, B. J. Eggleton, G. Cerullo, F. X. Kärtner, “Optical waveform synthesizer and its application to high-harmonic generation,” J. Phys. B 45, 074009 (2012). [CrossRef]
  46. B. E. Schmidt, A. D. Shiner, M. Giguère, P. Lassonde, C. A. Trallero-Herrero, J.-C. Kieffer, P. B. Corkum, D. M. Villeneuve, F. Légaré, “High harmonic generation with long-wavelength few-cycle laser pulses,” J. Phys. B 45, 074008 (2012). [CrossRef]
  47. C. Varin, C. Peltz, T. Brabec, T. Fennel, “Attosecond plasma wave dynamics in laser-driven cluster nanoplasmas,” Phys. Rev. Lett. 108, 175007 (2012). [CrossRef] [PubMed]
  48. C. Ruppert, S. Thunich, G. Abstreiter, A. Fontcuberta i Morral, A. W. Holleitner, M. Betz, “Quantum interference control of femtosecond, μA current bursts in single GaAs nanowires,” Nano Lett. 10, 1799–1804 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited