OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 4 — Feb. 24, 2014
  • pp: 4256–4266

The effect of the Gouy phase in optical-pump-THz-probe spectroscopy

Saima Ahmed, Janne Savolainen, and Peter Hamm  »View Author Affiliations

Optics Express, Vol. 22, Issue 4, pp. 4256-4266 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1665 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We show theoretically as well as experimentally that the Gouy-phase shift, which depends on the exact positioning of a sample in relation to the focus of a probe beam in a pump-probe experiment, may have a pronounced effect on the shape of the pump-probe signal. The effect occurs only when single-cycle probe pulses are used, i.e. when the slowly varying envelope approximation breaks down, while it disappears for multi-cycle pulses. The effect is thus most relevant in THz time-resolved spectroscopy, where such single cycle pulses are most commonly used, but it should not be overlooked also in other spectral regimes when correspondingly short pulses are involved.

© 2014 Optical Society of America

OCIS Codes
(190.7110) Nonlinear optics : Ultrafast nonlinear optics
(300.6270) Spectroscopy : Spectroscopy, far infrared
(300.6420) Spectroscopy : Spectroscopy, nonlinear
(350.5030) Other areas of optics : Phase

ToC Category:
Terahertz Optics

Original Manuscript: November 19, 2013
Revised Manuscript: February 10, 2014
Manuscript Accepted: February 11, 2014
Published: February 18, 2014

Saima Ahmed, Janne Savolainen, and Peter Hamm, "The effect of the Gouy phase in optical-pump-THz-probe spectroscopy," Opt. Express 22, 4256-4266 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B. Ferguson, X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1, 26–33 (2002). [CrossRef]
  2. K. Reimann, “Table-top sources of ultrafast THz pulses,” Rep. Prog. Phys. 70, 1597–1632 (2007). [CrossRef]
  3. J. Faure, J. van Tilborg, R. A. Kaindl, W. P. Leemans, “Modelling laser based table-top THz sources: Optical rectification, propagation and electro-optic sampling,” Opt. Quantum Electron. 36, 681–697 (2004). [CrossRef]
  4. Y.-S. Lee, Principles of Terahertz Science and Technology (Springer, 2010).
  5. M. Theuer, S. S. Harsha, D. Molter, G. Torosyan, R. Beigang, “Terahertz time-domain spectroscopy of gases, liquids, and solids,” Chemphyschem 12, 2695–2705 (2011). [CrossRef] [PubMed]
  6. C. A. Schmuttenmaer, “Exploring dynamics in the far-infrared with terahertz spectroscopy,” Chem. Rev. 104, 1759–1779 (2004). [CrossRef] [PubMed]
  7. E. Pickwell, V. P. Wallace., “Biomedical applications of terahertz technology,” J. Phys. D Appl. Phys. 02, R301 (2009).
  8. D. M. Mittleman, R. H. Jacobsen, M. C. Nuss, “T-ray imaging,” IEEE J. Sel. Top. Quantum Electron. 2(3), 679–692 (1996). [CrossRef]
  9. K. J. Siebert, T. Loffler, H. Quast, M. Thomson, T. Bauer, R. Leonhardt, S. Czasch, H. G. Roskos, “Alloptoelectronic continuous wave THz imaging for biomedical applications,” Phys. Med. Biol. 47, 3743–3748 (2002). [CrossRef] [PubMed]
  10. J. Zielbauer, M. Wegener, “Ultrafast optical pump THz-probe spectroscopy on silicon,” Appl. Phys. Lett. 68, 1223, 1996). [CrossRef]
  11. M. C. Nuss, D. H. Auston, F. Capasso, “Direct subpicosecond measurement of carrier mobility of photoex-cited electrons in gallium arsenide,” Phys. Rev. Lett. 58, 2355–2358 (1987). [CrossRef] [PubMed]
  12. B. N. Flanders, D. C. Arnett, N. F. Scherer, “Optical pump-terahertz probe spectroscopy utilizing a cavity-dumped oscillator- driven terahertz spectrometer,” IEEE J. Sel. Top. Quantum Electron. 4, 353–359 (1998). [CrossRef]
  13. H. Němec, F. Kadlec, P. Kužel, “Methodology of an optical pump-terahetz probe experiment: An analytical frequency domain approach,” J. Chem. Phys. 117, 8454, 2002). [CrossRef]
  14. E. Knoesel, M. Bonn, J. Shan, F. Wang, T. F. Heinz, “Conductivity of solvated electrons in hexane investigated with terahertz time-domain spectroscopy,” J. Chem. Phys. 121, 394–404 (2004). [CrossRef] [PubMed]
  15. P. A. George, J. Strait, J. Dawlaty, S. Shivaraman, M. Chandrashekhar, F. Rana, M. G. Spencer, “Ultrafast optical-pump terahertz-probe spectroscopy of the carrier relaxation and recombination dynamics in epitaxial graphene,” Nano Lett. 8, 4248–4251 (2008). [CrossRef]
  16. M. Breusing, C. Ropers, T. Elsaesser, “Ultrafast carrier dynamics in graphite,” Phys. Rev. Lett. 102, 086809, 2009). [CrossRef] [PubMed]
  17. P. U. Jepsen, W. Schairer, I. H. Libon, U. Lemmer, N. Hecker, M. Birkholz, K. Lips, M. Schall, “Ultrafast carrier trapping in microcrystalline silicon observed in optical pumpterahertz probe measurements,” Appl. Phys. Lett. 79, 1291, 2001). [CrossRef]
  18. T. Kampfrath, L. Perfetti, F. Schapper, C. Frischkorn, M. Wolf, “Strongly coupled optical phonons in the ultrafast dynamics of the electronic energy and current relaxation in graphite,” Phys. Rev. Lett. 95, 187403, 2005). [CrossRef] [PubMed]
  19. D. Polli, M. Rini, S. Wall, R. W. Schoenlein, Y. Tomioka, Y. Tokura, G. Cerullo, A. Cavalleri, “Coherent orbital waves in the photo-induced insulator-metal dynamics of a magnetoresistive manganite,” Nat. Mater. 6, 643–647 (2007). [CrossRef] [PubMed]
  20. K. W. Kim, A. Pashkin, H. Schaefer, M. Beyer, M. Porer, T. Wolf, C. Bernhard, J. Demsar, R. Huber, A. Leitenstorfer, “Ultrafast transient generation of spin-density-wave order in the normal state of bafe2as2 driven by coherent lattice vibrations,” Nat. Mater. 11, 497–501 (2012). [CrossRef] [PubMed]
  21. G. Haran, W. D. Sun, K. Wynne, R. M. Hochstrasser, “Femtosecond far-infrared pump-probe spectroscopy: a new tool for studying low-frequency vibrational dynamics in molecular condensed phases,” Chem. Phys. Lett. 274, 365–371 (1997). [CrossRef]
  22. R. McElroy, K. Wynne, “Ultrafast dipole solvation measured in the far infrared,” Phys. Rev. Lett. 79, 3078–3081 (1997). [CrossRef]
  23. D. You, P. H. Bucksbaum, “Propagation of half-cycle far infrared pulses,” J. Opt. Soc. Am. B 14, 1651–1655 (1997). [CrossRef]
  24. C. R. Gouy, “Sur une propriete nouvelle des ondes lumineuses,” Acad. Sci. Paris 110, 1251, 1890).
  25. S. Feng, H. G. Winful, R. W. Hellwarth, “Gouy shift and tempral reshaping of focused single-cycle electromagnetic pulses,” Opt. Lett. 23, 385–387 (1998). [CrossRef]
  26. P. Kužel, M. A. Khazan, J. Kroupa, “Spatiotemporal transformations of ultrashort terahertz pulses,” J. Opt. Soc. Am. B 16, 1795–1800 (1999). [CrossRef]
  27. A. B. Ruffin, J. V. Rudd, J. F. Whitaker, S. Feng, H. G. Winful, “Direct observation of the Gouy physe shift with single-cycle terahertz pulses,” Phys. Rev. Lett. 83, 3410–3413 (1999). [CrossRef]
  28. T. Feurer, N. S. Stoyanov, D. W. Ward, K. A. Nelson, “Direct visualization of the Gouy physe by focusing phonon polaritons,” Phys. Rev. Lett. 88, 257402, 2002). [CrossRef]
  29. T. Tritschler, K. D. Hof, M. W. Klein, M. Wegener, “Variation of the carrier-envelope phase of few-cycle laser pulses owing to the Gouy phase: a solid-state-based measurement,” Opt. Lett. 30, 753–755 (2005). [CrossRef] [PubMed]
  30. L. Zhang, H. Zhong, K. Mu, C. Zhang, Y. Zhao, “Phase characterization in broadband THz wave detection through field-induced second harmonic generation,” Opt. Express 20, 75–80 (2012). [CrossRef] [PubMed]
  31. R. W. Boyd, Nonlinear Optics (Academic, 1992).
  32. N. Lastzka, R. Schnabel, “The Gouy phase shift in nonlinear interactions of waves,” Opt. Express 15, 7211–7217 (2007). [CrossRef] [PubMed]
  33. C.-Y. Chung, J. Hsu, S. Mukamel, E. O. Potma, “Controlling stimulated coherent spectroscopy and microscopy by a position-dependent phase,” Phys. Rev. A 87, 033833, 2013). [CrossRef]
  34. J. T. Kindt, C. A. Schmuttenmaer, “Theory for determination of the low-frequency time-dependent response function in liquids using time-resolved terahertz pulse spectroscopy,” J. Chem. Phys. 110, 8589, 1999). [CrossRef]
  35. P. Kužel, H. Němec, F. Kadlec, “Propagation of THz pulses in photoexcited media: Analytical theory for layered systems,” J. Chem. Phys. 127, 024506, 2007). [CrossRef]
  36. P. Kužel, H. Němec, F. Kadlec, C. Kadlec, “Gouy shift correction for highly accurate refractive index retrieval in time-domain terahertz spectroscopy,” Opt. Express 18, 15338–15348 (2010). [CrossRef]
  37. J. Savolainen, S. Ahmed, P. Hamm, “2D Raman-Thz spectroscopy of water,” Proc. Natl. Acad. Sci. U. S. A. 110, 20402–20407 (2013). [CrossRef] [PubMed]
  38. P. Hamm, J. Savolainen, “2D-Raman-THz spectroscopy of water: Theory,” J. Chem. Phys. 136, 094516, 2012). [CrossRef]
  39. F. Krausz, M. Ivanov, “Attosecond physics,” Rev. Mod. Phys. 81, 163–234 (2009). [CrossRef]
  40. L. Gallmann, J. Herrmann, R. Locher, M. Sabbar, A. Ludwig, M. Lucchini, U. Keller, “Resolving intra-atomic electron dynamics with attosecond transient absorption spectroscopy,” Molecular Physics, in press, DOI: (2013). [CrossRef]
  41. N. Shivaram, A. Roberts, L. Xu, A. Sandhu, “In situ spatial mapping of Gouy phase slip for high-detail attosecond pumpprobe measurements,” Opt. Lett. 35, 3312–3314 (2010). [CrossRef] [PubMed]
  42. G. Cerullo, M. Nisoli, S. Stagira, S. D. Silvestri, “Sub-8-fs pulses from an ultrabroadband optical parametric amplifier in the visible,” Opt. Lett. 23, 1283–1285, 1998). [CrossRef]
  43. D. Herrmann, C. Homann, R. Tautz, M. Scharrer, P. S. J. Russell, F. Krausz, L. Veisz, E. Riedle, “Approaching the full octave: Noncollinear optical parametric chirped pulse amplification with two-color pumping,” Opt. Express 18, 18752–18762 (2010). [CrossRef] [PubMed]
  44. T. Kobayashi, J. Liu, K. Okamura, “Applications of parametric processes to high-quality multicolour ultra-short pulses, pulse cleaning and cep stable sub-3fs pulse,” J. Phys. B At. Mol. Opt. Phys. 45, 074005, 2012). [CrossRef]
  45. P. B. Petersen, A. Tokmakoff, “Source for ultrafast continuum infrared and terahertz radiation,” Opt. Lett. 35, 1962–1964 (2010). [CrossRef] [PubMed]
  46. M. Cheng, A. Reynolds, H. Widgren, M. Khalil, “Generation of tunable octave-spanning mid-infrared pulses by filamentation in gas media,” Opt. Lett. 37, 1787–1789 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited