OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 4 — Feb. 24, 2014
  • pp: 4290–4300

Multichannel optical filters with an ultranarrow bandwidth based on sampled Brillouin dynamic gratings

Jin-Jin Guo, Ming Li, Ye Deng, Ningbo Huang, Jianguo Liu, and Ninghua Zhu  »View Author Affiliations

Optics Express, Vol. 22, Issue 4, pp. 4290-4300 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1541 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We first propose a multichannel optical filter with an ultra-narrow 3-dB bandwidth based on sampled Brillouin dynamic gratings (SBDGs). The multichannel optical filter is generated when an optical pulse interfaces with an optical pulse train based on an ordinary stimulated Brillouin scattering (SBS) process in a birefringent optical fiber. Multichannel optical filter based on SBDG is generated with a 3-dB bandwidth from 12.5 MHz to 1 GHz. In addition, a linearly chirped SBDG is proposed to generate multichannel dispersion compensator with a 3-dB bandwidth of 300 MHz and an extremely high dispersion value of 432 ns/nm. The proposed multichannel optical filters have important potential applications in the optical filtering, multichannel dispersion compensation and optical signal processing.

© 2014 Optical Society of America

OCIS Codes
(060.2310) Fiber optics and optical communications : Fiber optics
(060.4370) Fiber optics and optical communications : Nonlinear optics, fibers
(290.5900) Scattering : Scattering, stimulated Brillouin
(190.2055) Nonlinear optics : Dynamic gratings

ToC Category:
Fiber Optics

Original Manuscript: November 21, 2013
Revised Manuscript: January 12, 2014
Manuscript Accepted: January 31, 2014
Published: February 18, 2014

Jin-Jin Guo, Ming Li, Ye Deng, Ningbo Huang, Jianguo Liu, and Ninghua Zhu, "Multichannel optical filters with an ultranarrow bandwidth based on sampled Brillouin dynamic gratings," Opt. Express 22, 4290-4300 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. L. Lee, M. P. Fok, S. M. Wan, C. Shu, “Optically controlled Sagnac loop comb filter,” Opt. Express 12(25), 6335–6340 (2004). [CrossRef] [PubMed]
  2. M. Li, X. Chen, T. Fujii, Y. Kudo, H. Li, Y. Painchaud, “Multiwavelength fiber laser based on the utilization of a phase-shifted phase-only sampled fiber Bragg grating,” Opt. Lett. 34(11), 1717–1719 (2009). [CrossRef] [PubMed]
  3. L. Xiang, D. Gao, Y. Yu, M. Ye, “Silicon-Based Integrated Comb Filter and Demultiplexer for Simultaneous WDM Signal Processing,” IEEE J. Sel. Top. Quantum Electron. 20(4), 8200208 (2014). [CrossRef]
  4. Y. T. Dai, X. F. Chen, X. Xu, C. Fan, S. Z. Xie, “High channel-count comb filter based on chirped sampled fiber Bragg grating and phase shift,” IEEE Photon. Technol. Lett. 17(5), 1040–1042 (2005). [CrossRef]
  5. M. Ibsen, M. K. Durkin, M. J. Cole, R. I. Laming, “Sinc-sampled fiber Bragg gratings for identical multiple wavelength operation,” IEEE Photon. Technol. Lett. 10(6), 842–844 (1998). [CrossRef]
  6. H. Li, Y. Sheng, Y. Li, J. E. Rothenberg, “Phased-only sampled fiber Bragg gratings for high channel counts chromatic dispersion compensation,” J. Lightwave Technol. 21(9), 2074–2083 (2003). [CrossRef]
  7. M. Ibsen, A. Fu, H. Geiger, R. I. Laming, “All-fibre 4 x 10Gbit/s WDM link with DFB fibre laser transmitters and single sinc-sampled fibre grating dispersion compensator,” Electron. Lett. 35(12), 982–983 (1999). [CrossRef]
  8. M. Li, H. Li, Y. Painchaud, “Multi-channel notch filter based on a phase-shift phase-only-sampled fiber Bragg grating,” Opt. Express 16(23), 19388–19394 (2008). [CrossRef] [PubMed]
  9. A. V. Buryak, K. Y. Kolossovski, D. Y. Stepanov, “Optimization of Refractive Index Sampling for Multichannel Fiber Bragg Gratings,” IEEE J. Quantum Electron. 39(1), 91–98 (2003). [CrossRef]
  10. M. Li, X. Chen, J. Hayashi, H. Li, “Advanced design of the ultrahigh-channel-count fiber Bragg grating based on the double sampling method,” Opt. Express 17(10), 8382–8394 (2009). [CrossRef] [PubMed]
  11. J. Guo, Y. Yang, G. Peng, “Analysis of polarization-independent tunable optical comb filter by cascading MZI and phase modulating Sagnac loop,” Opt. Commun. 284(21), 5144–5147 (2011). [CrossRef]
  12. W. Jin, C. Wang, H. Xuan, W. Jin, “Tunable comb filters and refractive index sensors based on fiber loop mirror with inline high birefringence microfiber,” Opt. Lett. 38(21), 4277–4280 (2013). [CrossRef] [PubMed]
  13. T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15(8), 1277–1294 (1997). [CrossRef]
  14. X. F. Chen, C. C. Fan, Y. Luo, S. Z. Xie, S. Hu, “Novel flat multichannel filter based on strongly chirped sampled fiber Bragg grating,” IEEE Photon. Technol. Lett. 12(11), 1501–1503 (2000). [CrossRef]
  15. Y. Nasu, S. Yamashita, “Densification of sampled fiber Bragg gratings using multiple phase shift (MPS) technique,” J. Lightwave Technol. 23(4), 1808–1817 (2005). [CrossRef]
  16. J. Magné, P. Giaccari, S. LaRochelle, J. Azaña, L. R. Chen, “All-fiber comb filter with tunable free spectral range,” Opt. Lett. 30(16), 2062–2064 (2005). [CrossRef] [PubMed]
  17. K. Y. Song, H. J. Yoon, “Observation of narrowband intrinsic spectra of Brillouin dynamic gratings,” Opt. Lett. 35(17), 2958–2960 (2010). [CrossRef] [PubMed]
  18. K. Y. Song, W. Zou, Z. He, K. Hotate, “Optical time-domain measurement of Brillouin dynamic grating spectrum in a polarization-maintaining fiber,” Opt. Lett. 34(9), 1381–1383 (2009). [CrossRef] [PubMed]
  19. K. Y. Song, H. J. Yoon, “High-resolution Brillouin optical time domain analysis based on Brillouin dynamic grating,” Opt. Lett. 35(1), 52–54 (2010). [CrossRef] [PubMed]
  20. K. Y. Song, W. Zou, Z. He, K. Hotate, “All-optical dynamic grating generation based on Brillouin scattering in polarization-maintaining fiber,” Opt. Lett. 33(9), 926–928 (2008). [CrossRef] [PubMed]
  21. Y. Dong, L. Chen, X. Bao, “Characterization of the Brillouin grating spectra in a polarization-maintaining fiber,” Opt. Express 18(18), 18960–18967 (2010). [CrossRef] [PubMed]
  22. S. Chin, L. Thévenaz, “Tunable photonic delay lines in optical fibers,” Laser Photon. Rev. 6(6), 724–738 (2012). [CrossRef]
  23. Y. Dong, X. Bao, L. Chen, “Distributed temperature sensing based on birefringence effect on transient Brillouin grating in a polarization-maintaining photonic crystal fiber,” Opt. Lett. 34(17), 2590–2592 (2009). [CrossRef] [PubMed]
  24. W. Zou, Z. He, K. Y. Song, K. Hotate, “Correlation-based distributed measurement of a dynamic grating spectrum generated in stimulated Brillouin scattering in a polarization-maintaining optical fiber,” Opt. Lett. 34(7), 1126–1128 (2009). [CrossRef] [PubMed]
  25. K. Y. Song, S. Chin, N. Primerov, L. Thevenaz, “Time-domain distributed fiber sensor with 1 cm spatial resolution based on Brillouin dynamic grating,” J. Lightwave Technol. 28(14), 2062–2067 (2010). [CrossRef]
  26. K. Y. Song, H. J. Yoon, “High-resolution Brillouin optical time domain analysis based on Brillouin dynamic grating,” Opt. Lett. 35(1), 52–54 (2010). [CrossRef] [PubMed]
  27. J. Sancho, N. Primerov, S. Chin, Y. Antman, A. Zadok, S. Sales, L. Thévenaz, “Tunable and reconfigurable multi-tap microwave photonic filter based on dynamic Brillouin gratings in fibers,” Opt. Express 20(6), 6157–6162 (2012). [CrossRef] [PubMed]
  28. H. G. Winful, “Chirped Brillouin dynamic gratings for storing and compressing light,” Opt. Express 21(8), 10039–10047 (2013). [CrossRef] [PubMed]
  29. M. Santagiustina, S. Chin, N. Primerov, L. Ursini, L. Thévenaz, “All-optical signal processing using dynamic Brillouin gratings,” Sci. Rep. 3, 1594 (2013). [CrossRef] [PubMed]
  30. J. Guo, N. Zhu, N. Huang, Y. Deng, W. Li, X. Wang, J. Liu, and M. Li, “Proposal of Sampled Brillouin Dynamic Gratings,” in Asia Communications and Photonics Conference, OSA Technical Digest (online) (2013), paper AF2D.14. [CrossRef]
  31. Z. Zhu, D. J. Gauthier, R. W. Boyd, “Stored light in an optical fiber via stimulated Brillouin scattering,” Science 318(5857), 1748–1750 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited