OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 4 — Feb. 24, 2014
  • pp: 4301–4306

Enhanced spontaneous emission inside hyperbolic metamaterials

Lorenzo Ferrari, Dylan Lu, Dominic Lepage, and Zhaowei Liu  »View Author Affiliations

Optics Express, Vol. 22, Issue 4, pp. 4301-4306 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (2214 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Hyperbolic metamaterials can enhance spontaneous emission, but the radiation-matter coupling is not optimized if the light source is placed outside such media. We demonstrate a 3-fold improvement of the Purcell factor over its outer value and a significant enlargement in bandwidth by including the emitter within a Si/Ag periodic multilayer metamaterial. To extract the plasmonic modes of the structure into the far field we implement two types of 1D grating with triangular and rectangular profile, obtaining a 10-fold radiative enhancement at visible frequencies.

© 2014 Optical Society of America

OCIS Codes
(230.4170) Optical devices : Multilayers
(250.5230) Optoelectronics : Photoluminescence
(160.3918) Materials : Metamaterials
(250.5403) Optoelectronics : Plasmonics

ToC Category:

Original Manuscript: December 5, 2013
Revised Manuscript: February 8, 2014
Manuscript Accepted: February 10, 2014
Published: February 18, 2014

Lorenzo Ferrari, Dylan Lu, Dominic Lepage, and Zhaowei Liu, "Enhanced spontaneous emission inside hyperbolic metamaterials," Opt. Express 22, 4301-4306 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Kinkhabwala, Z. F. Yu, S. H. Fan, Y. Avlasevich, K. Mullen, W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
  2. K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004). [PubMed]
  3. I. De Leon, P. Berini, “Theory of noise in high-gain surface plasmon-polariton amplifiers incorporating dipolar gain media,” Opt. Express 19(21), 20506–20517 (2011). [PubMed]
  4. A. G. Brolo, “Plasmonics for future biosensors,” Nat. Photonics 6(11), 709–713 (2012).
  5. H. G. Frey, S. Witt, K. Felderer, R. Guckenberger, “High-resolution imaging of single fluorescent molecules with the optical near-field of a metal tip,” Phys. Rev. Lett. 93(20), 200801 (2004). [PubMed]
  6. M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, W. W. Webb, “Zero-mode waveguides for single-molecule analysis at high concentrations,” Science 299(5607), 682–686 (2003). [PubMed]
  7. G. Shambat, B. Ellis, A. Majumdar, J. Petykiewicz, M. A. Mayer, T. Sarmiento, J. Harris, E. E. Haller, J. Vučković, “Ultrafast direct modulation of a single-mode photonic crystal nanocavity light-emitting diode,” Nat. Commun. 2, 539 (2011). [PubMed]
  8. L. Novotny and B. Hecht, Principles of Nano-optics (Cambridge University, 2012)
  9. G. W. Ford, W. H. Weber, “Electromagnetic-interactions of molecules with metal-surfaces,” Phys. Rep. 113(4), 195–287 (1984).
  10. W. L. Barnes, “Fluorescence near interfaces: the role of photonic mode density,” J. Mod. Opt. 45(4), 661–699 (1998).
  11. E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).
  12. M. Noginov, M. Lapine, V. Podolskiy, Y. Kivshar, “Focus issue: hyperbolic metamaterials,” Opt. Express 21(12), 14895–14897 (2013). [PubMed]
  13. Z. Jacob, I. I. Smolyaninov, E. E. Narimanov, “Broadband Purcell effect: Radiative decay engineering with metamaterials,” Appl. Phys. Lett. 100(18), 181105 (2012).
  14. D. Lu, J. J. Kan, E. E. Fullerton, Z. Liu, “Enhancing spontaneous emission rates of molecules using nanopatterned multilayer hyperbolic metamaterials,” Nat. Nanotechnol. 9(1), 48–53 (2014). [PubMed]
  15. P. Yeh, Optical Waves in Layered Media (Wiley, 1988).
  16. P. B. Johnson, R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
  17. D. E. Aspnes, A. A. Studna, “Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV,” Phys. Rev. B 27(2), 985–1009 (1983).
  18. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  19. P. Berini, “Long-range surface plasmon polaritons,” Adv. Opt. Photonics 1(3), 484–588 (2009).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited