OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 4 — Feb. 24, 2014
  • pp: 4329–4341

Heterogeneous trench-assisted few-mode multi-core fiber with low differential mode delay

Jiajing Tu, Kunimasa Saitoh, Katsuhiro Takenaga, and Shoichiro Matsuo  »View Author Affiliations


Optics Express, Vol. 22, Issue 4, pp. 4329-4341 (2014)
http://dx.doi.org/10.1364/OE.22.004329


View Full Text Article

Enhanced HTML    Acrobat PDF (2148 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose a kind of heterogeneous multi-core fiber (Hetero-MCF) with trench-assisted multi-step index few-mode core (TA-MSI-FMC) deployed inside. After analyzing the impact of each parameter on differential mode delay (DMD), we design a couple of TA-MSI-FMCs with Aeff of 110 μm2 for LP01 mode. DMD of each TA-MSI-FMC is smaller than |170| ps/km over C + L band and the total DMD can approach almost 0 ps/km over C + L band if we adopt DMD managed transmission line technique by using only one kind of Hetero-TA-FM-MCF. For such Hetero-TA-FM-MCF, crosstalk is about –30 dB/100km at wavelength of 1550 nm as bending radius becomes larger than 15 cm, core number can reach 12, a relative core multiplicity factor (RCMF) is 15.7, and the RCMF can even reach 26.1 if we treat LP11 mode as two special modes thanks to the multiple-input-multiple-output technology.

© 2014 Optical Society of America

OCIS Codes
(060.2270) Fiber optics and optical communications : Fiber characterization
(060.2280) Fiber optics and optical communications : Fiber design and fabrication

ToC Category:
Fiber Optics

History
Original Manuscript: December 20, 2013
Revised Manuscript: February 5, 2014
Manuscript Accepted: February 6, 2014
Published: February 18, 2014

Citation
Jiajing Tu, Kunimasa Saitoh, Katsuhiro Takenaga, and Shoichiro Matsuo, "Heterogeneous trench-assisted few-mode multi-core fiber with low differential mode delay," Opt. Express 22, 4329-4341 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-4-4329


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Matsuo, Y. Sasaki, T. Akamatsu, I. Ishida, K. Takenaga, K. Okuyama, K. Saitoh, M. Kosihba, “12-core fiber with one ring structure for extremely large capacity transmission,” Opt. Express 20(27), 28398–28408 (2012). [CrossRef] [PubMed]
  2. M. Bigot-Astruc, D. Boivin, and P. Sillard, “Design and fabrication of weakly-coupled few-modes fibers,” in IEEE Photonics Society Summer Topical Meetings (2012), paper TuC1.1.
  3. K. Takenaga, Y. Sasaki, N. Guan, M. Kasahara, K. Saitoh, M. Koshiba, “Large effective-area few-mode multicore fiber,” IEEE Photon. Technol. Lett. 24(21), 1941–1944 (2012). [CrossRef]
  4. C. Xia, R. Amezcua-Correa, N. Bai, E. Antonio-Lopez, D. May-Arrioja, A. Schulzgen, M. Richardson, J. Linares, C. Montero, E. Mateo, X. Zhou, and G. Li, “Low-crosstalk few-mode multi-core fiber for high-mode-density space-division multiplexing,” in European Conference and Exhibition on Optical Communication (ECOC) (Optical Society of America, Washington, DC, 2012), paper Mo.1.F.5.
  5. R. Maruyama, N. Kuwaki, S. Matuo, K. Sato, and M. Ohashi, “Mode dispersion compensating optical transmission line composed of two-mode optical fibers,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2012), paper JW2A.13.
  6. T. Sakamoto, T. Mori, T. Yamamoto, and S. Tomita, “Differential mode delay managed transmission line for wide-band WDM-MIMO system,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2012), paper OM2D.1. [CrossRef]
  7. M. Li, E. Ip, and Y. Huang, “Large effective area FMF with low DMGD,” in IEEE Photonics Society Summer Topical Meetings (2013), paper MC3.4.
  8. K. Sato, R. Maruyama, N. Kuwaki, S. Matsuo, M. Ohashi, “Optimized graded index two-mode optical fiber with low DMD, large Aeff and low bending loss,” Opt. Express 21(14), 16231–16238 (2013). [CrossRef] [PubMed]
  9. T. Mori, T. Sakamoto, M. Wada, T. Yamamoto, and F. Yamamoto, “Low DMD four LP mode transmission fiber for wide-band WDM-MIMO system,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2013), paper OTh3K.1. [CrossRef]
  10. R. Maruyama, N. Kuwaki, S. Matsuo, K. Sato, and M. Ohashi, “DMD free transmission line composed of TMFs with large effective area for MIMO processing,” in European Conference and Exhibition on Optical Communication (ECOC) (Optical Society of America, Washington, DC, 2012), paper Tu.1.F.2. [CrossRef]
  11. J. Tu, K. Saitoh, M. Koshiba, K. Takenaga, S. Matsuo, “Design and analysis of large-effective-area heterogeneous trench-assisted multi-core fiber,” Opt. Express 20(14), 15157–15170 (2012). [CrossRef] [PubMed]
  12. J. Tu, K. Saitoh, M. Koshiba, K. Takenaga, S. Matsuo, “Optimized design method for bend-insensitive heterogeneous trench-assisted multi-core fiber with ultra-low crosstalk and high core density,” J. Lightwave Technol. 31(15), 2590–2598 (2013). [CrossRef]
  13. T. Sakamoto, T. Mori, T. Yamamoto, S. Tomita, “Differential mode delay managed transmission line for WDM-MIMO system using multi-step index fiber,” J. Lightwave Technol. 30(17), 2783–2787 (2012). [CrossRef]
  14. Y. Sasaki, Y. Amma, K. Takenaga, S. Matsuo, K. Saitoh, and M. Koshiba, “Investigation of crosstalk dependencies on bending radius of heterogeneous multicore fiber,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2013), paper OTh3K.3. [CrossRef]
  15. K. Saitoh, M. Koshiba, “Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: Application to photonic crystal fibers,” IEEE J. Quantum Electron. 38(7), 927–933 (2002). [CrossRef]
  16. T. Matsui, K. Nakajima, C. Fukai, “Applicability of photonic crystal fiber with uniform air-hole structure to high-speed and wide-band transmission over conventional telecommunication bands,” J. Lightwave Technol. 27(23), 5410–5416 (2009). [CrossRef]
  17. T. Hayashi, T. Nagashima, O. Shimakawa, T. Sasaki, and E. Sasaoka, “Crosstalk variation of multi-core fiber due to fiber bend,” in Proceedings of 36th European Conference and Exhibition on Optical Communication (Institute of Electrical and Electronics Engineers, 2010), paper We.8.F.6. [CrossRef]
  18. K. Takenaga, Y. Arakawa, S. Tanigawa, N. Guan, S. Matsuo, K. Saitoh, and M. Koshiba, “Reduction of crosstalk by trench-assisted multi-core fiber,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper OWJ4. [CrossRef]
  19. B. Zhu, T. F. Taunay, M. Fishteyn, X. Liu, S. Chandrasekhar, M. F. Yan, J. M. Fini, E. M. Monberg, F. V. Dimarcello, “112-Tb/s Space-division multiplexed DWDM transmission with 14-b/s/Hz aggregate spectral efficiency over a 76.8-km seven-core fiber,” Opt. Express 19(17), 16665–16671 (2011). [CrossRef] [PubMed]
  20. K. Takenaga, Y. Arakawa, Y. Sasaki, S. Tanigawa, S. Matsuo, K. Saitoh, M. Koshiba, “A large effective area multi-core fiber with an optimized cladding thickness,” Opt. Express 19(26), B543–B550 (2011). [CrossRef] [PubMed]
  21. S. Matsuo, K. Takenaga, Y. Arakawa, Y. Sasaki, S. Taniagwa, K. Saitoh, M. Koshiba, “Large-effective-area ten-core fiber with cladding diameter of about 200 μm,” Opt. Lett. 36(23), 4626–4628 (2011). [CrossRef] [PubMed]
  22. S. Randel, R. Ryf, A. H. Gnauck, M. A. Mestre, C. Schmidt, R.-J. Essiambre, P. J. Winzer, R. Delbue, P. Pupalaikis, A. Sureka, Y. Sun, X. Jiang, and R. Lingle, “Mode-multiplexed 6×20-GBd QPSK transmission over 1200-km DGD-compensated few-mode fiber,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2012), paper PDP5C.5. [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited