OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 4 — Feb. 24, 2014
  • pp: 4371–4378

Narrowband photon pair source for quantum networks

F. Monteiro, A. Martin, B. Sanguinetti, H. Zbinden, and R. T. Thew  »View Author Affiliations

Optics Express, Vol. 22, Issue 4, pp. 4371-4378 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (2766 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate a compact photon pair source based on a periodically poled lithium niobate nonlinear crystal in a short cavity. This approach provides efficient, low-loss, mode selection that is compatible with standard telecommunication networks. Photons with a coherence time of 8.6 ns (116 MHz) are produced and their purity is demonstrated. A source brightness of 134 pairs (s. mW. MHz)−1 is reported. The cavity parameters are chosen such that the photon pair modes emitted can be matched to telecom ultra dense wavelength division multiplexing (U-DWDM) channel spacings. The high level of purity and compatibility with standard telecom networks is of great importance for complex quantum communication networks.

© 2014 Optical Society of America

OCIS Codes
(190.4410) Nonlinear optics : Nonlinear optics, parametric processes
(270.5565) Quantum optics : Quantum communications

ToC Category:
Quantum Optics

Original Manuscript: December 13, 2013
Revised Manuscript: February 2, 2014
Manuscript Accepted: February 4, 2014
Published: February 18, 2014

F. Monteiro, A. Martin, B. Sanguinetti, H. Zbinden, and R. T. Thew, "Narrowband photon pair source for quantum networks," Opt. Express 22, 4371-4378 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. N. Gisin, R. Thew, “Quantum communication,” Nat. Photon. 1, 165 (2007). [CrossRef]
  2. S. Fasel, N. Gisin, G. Ribordy, H. Zbinden, “Quantum key distribution over 30 km of standard fiber using energy-time entangled photon pairs: a comparison of two chromatic dispersion reduction methods,” Euro. Phys. J. D 30, 143–148 (2004). [CrossRef]
  3. M. Zukowski, A. Zeilinger, M. A. Horne, A. K. Ekert, ““Event-ready-detectors” Bell experiment via entanglement swapping,” Phys Rev Lett 71, 4287 (1993). [CrossRef] [PubMed]
  4. M. Halder, A. Beveratos, N. Gisin, V. Scarani, C. Simon, M. Aus, H. Zbinden, “Entangling independent photons by time measurement,” Nat. Phys. 3, 692–695 (2007). [CrossRef]
  5. P. Aboussouan, O. Alibart, D. B. Ostrowsky, P. Baldi, S. Tanzilli, “High-visibility two-photon interference at a telecom wavelength using picosecond-regime separated sources,” Phys. Rev. A 81, 021801 (2010). [CrossRef]
  6. S. Tanzilli, A. Martin, F. Kaiser, M. De Micheli, O. Alibart, D. Ostrowsky, “On the genesis and evolution of Integrated quantum optics,” Laser & Photonics Reviews 6, 115–143 (2012). [CrossRef]
  7. W. Grice, A. U’Ren, I. Walmsley, “Eliminating frequency and space-time correlations in multiphoton states,” Phys Rev A 64, 063815 (2001). [CrossRef]
  8. C. I. Osorio, N. Sangouard, R. T. Thew, “On the purity and indistinguishability of down-converted photons,” J. Phys. B: At. Mol. Opt. Phys 46, 055501 (2013). [CrossRef]
  9. Y. P. Huang, J. B. Altepeter, P. Kumar, “Heralding single photons without spectral factorability,” Phys. Rev. A 82, 043826 (2010). [CrossRef]
  10. M. D. Eisaman, J. Fan, A. Migdall, S. V. Polyakov, “Invited review article: single-photon sources and detectors.” Rev Sci Instrum 82, 071101 (2011). [CrossRef] [PubMed]
  11. M. Scholz, L. Koch, R. Ullmann, O. Benson, “Single-mode operation of a high-brightness narrow-band single-photon source,” Appl Phys Lett 94, 201105 (2009). [CrossRef]
  12. E. Pomarico, B. Sanguinetti, N. Gisin, R. Thew, H. Zbinden, G. Schreiber, A. Thomas, W. Sohler, “Waveguide-based OPO source of entangled photon pairs,” New J. Phys. 11, 113042 (2009). [CrossRef]
  13. Y. J. Moreno, S. R. Benavides, A. B. U’Ren, “Theory of cavity-enhanced spontaneous parametric downcon-version,” P Soc Photo-opt Ins 20, 1221–1233 (2010).
  14. D. Höckel, L. Koch, O. Benson, “Direct measurement of heralded single-photon statistics from a parametric down-conversion source,” Phys. Rev. A 83, 013802 (2011). [CrossRef]
  15. E. Pomarico, B. Sanguinetti, C. I. Osorio, H. Herrmann, R. T. Thew, “Engineering integrated pure narrow-band photon sources,” New J. Phys. 14, 033008 (2012). [CrossRef]
  16. C.-S. Chuu, G. Y. Yin, S. E. Harris, “A miniature ultrabright source of temporally long, narrowband biphotons,” Appl Phys Lett 101, 051108 (2012). [CrossRef]
  17. J. Fekete, D. Rieländer, M. Cristiani, H. de Riedmatten, “Ultranarrow-band photon-pair source compatible with solid state quantum memories and telecommunication networks,” Phys Rev Lett 110, 220502 (2013). [CrossRef] [PubMed]
  18. K. Luo, H. Herrmann, S. Krapick, R. Ricken, V. Quiring, H. Suche, W. Sohler, C. Silberhorn, “Two-color narrowband photon pair source with high brightness based on clustering in a monolithic waveguide resonator,” arXiv (2013).
  19. R. C. Eckardt, C. D. Nabors, W. J. Kozlovsky, R. L. Byer, “Optical parametric oscillator frequency tuning and control,” J. Opt. Soc. Am. B 8, 646–667 (1991). [CrossRef]
  20. Y. Lu, Z. Ou, “Optical parametric oscillator far below threshold: Experiment versus theory,” Phys. Rev. A 62, 033804 (2000). [CrossRef]
  21. P. Hariharan, B. C. Sanders, “Cavity-enhanced parametric down-conversion as a source of correlated photons,” J Mod Optic 47, 1739–1744 (2000). [CrossRef]
  22. M. Förtsch, J. U. Fürst, C. Wittmann, D. Strekalov, A. Aiello, M. V. Chekhova, C. Silberhorn, G. Leuchs, C. Marquardt, “A versatile source of single photons for quantum information processing,” Nat. Commun. 4, 1818 (2013). [CrossRef] [PubMed]
  23. N. Bruno, A. Martin, R. T. Thew, “Generation of tunable wavelength coherent states and heralded single photons for quantum optics applications,” arXiv: p. 1309.6172 (2013).
  24. B. Korzh, N. Walenta, T. Lunghi, N. Gisin, H. Zbinden, C. We, “Free-running InGaAs single photon detector with 1 cps dark count rate at 10% efficiency,” arXiv: p. 1312.2636v1 (2013).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited