OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 4 — Feb. 24, 2014
  • pp: 4423–4436

Strong excitation of emitters in an impedance matched cavity: the area theorem, π-pulse and self-induced transparency

Thierry Chanelière  »View Author Affiliations

Optics Express, Vol. 22, Issue 4, pp. 4423-4436 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (910 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



I theoretically study the behavior of strong pulses exciting emitters inside a cavity. The ensemble is supposed to be inhomogeneously broadened and the cavity matched finding application in quantum storage of optical or RF photons. My analysis is based on energy and pulse area conservation rules predicting important distortions for specific areas. It is well supported by numerical simulations. I propose a qualitative interpretation in terms of slow-light. The analogy with the free space situation is remarkable.

© 2014 Optical Society of America

OCIS Codes
(020.1670) Atomic and molecular physics : Coherent optical effects
(160.5690) Materials : Rare-earth-doped materials
(190.5530) Nonlinear optics : Pulse propagation and temporal solitons
(270.5530) Quantum optics : Pulse propagation and temporal solitons
(270.6630) Quantum optics : Superradiance, superfluorescence
(270.5565) Quantum optics : Quantum communications

ToC Category:
Lasers and Laser Optics

Original Manuscript: December 18, 2013
Revised Manuscript: February 12, 2014
Manuscript Accepted: February 12, 2014
Published: February 19, 2014

Thierry Chanelière, "Strong excitation of emitters in an impedance matched cavity: the area theorem, π-pulse and self-induced transparency," Opt. Express 22, 4423-4436 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Haroche, J. Raimond, Exploring the Quantum: Atoms, Cavities, and Photons, Oxford Graduate Texts (OUP Oxford, 2006). [CrossRef]
  2. W. J. Kozlovsky, C. Nabors, R. L. Byer, “Efficient second harmonic generation of a diode-laser-pumped CW Nd: YAG laser using monolithic MgO: LiNbO3 external resonant cavities,” IEEE J. Quantum Electron. 24, 913–919 (1988). [CrossRef]
  3. M. Afzelius, C. Simon, “Impedance-matched cavity quantum memory,” Phys. Rev. A 82, 022310 (2010). [CrossRef]
  4. S. A. Moiseev, S. N. Andrianov, F. F. Gubaidullin, “Efficient multimode quantum memory based on photon echo in an optimal QED cavity,” Phys. Rev. A 82, 022311 (2010). [CrossRef]
  5. M. Sabooni, S. T. Kometa, A. Thuresson, S. Kröll, L. Rippe, “Cavity-enhanced storage-preparing for high-efficiency quantum memories,” New J. Phys. 15, 035025 (2013). [CrossRef]
  6. D. I. Schuster, A. P. Sears, E. Ginossar, L. DiCarlo, L. Frunzio, J. J. L. Morton, H. Wu, G. A. D. Briggs, B. B. Buckley, D. D. Awschalom, R. J. Schoelkopf, “High-cooperativity coupling of electron-spin ensembles to superconducting cavities,” Phys. Rev. Lett. 105, 140501 (2010). [CrossRef]
  7. Y. Kubo, F. R. Ong, P. Bertet, D. Vion, V. Jacques, D. Zheng, A. Dréau, J.-F. Roch, A. Auffeves, F. Jelezko, J. Wrachtrup, M. F. Barthe, P. Bergonzo, D. Esteve, “Strong coupling of a spin ensemble to a superconducting resonator,” Phys. Rev. Lett. 105, 140502 (2010). [CrossRef]
  8. R. Amsüss, C. Koller, T. Nöbauer, S. Putz, S. Rotter, K. Sandner, S. Schneider, M. Schramböck, G. Steinhauser, H. Ritsch, J. Schmiedmayer, J. Majer, “Cavity QED with magnetically coupled collective spin states,” Phys. Rev. Lett. 107, 060502 (2011). [CrossRef] [PubMed]
  9. P. Bushev, A. K. Feofanov, H. Rotzinger, I. Protopopov, J. H. Cole, C. M. Wilson, G. Fischer, A. Lukashenko, A. V. Ustinov, “Ultralow-power spectroscopy of a rare-earth spin ensemble using a superconducting resonator,” Phys. Rev. B 84, 060501 (2011). [CrossRef]
  10. Y. Kubo, C. Grezes, A. Dewes, T. Umeda, J. Isoya, H. Sumiya, N. Morishita, H. Abe, S. Onoda, T. Ohshima, V. Jacques, A. Dréau, J.-F. Roch, I. Diniz, A. Auffeves, D. Vion, D. Esteve, P. Bertet, “Hybrid quantum circuit with a superconducting qubit coupled to a spin ensemble,” Phys. Rev. Lett. 107, 220501 (2011). [CrossRef] [PubMed]
  11. M. Afzelius, N. Sangouard, G. Johansson, M. U. Staudt, C. M. Wilson, “Proposal for a coherent quantum memory for propagating microwave photons,” New J. Phys. 15, 065008 (2013). [CrossRef]
  12. B. Julsgaard, C. Grezes, P. Bertet, K. Mølmer, “Quantum memory for microwave photons in an inhomogeneously broadened spin ensemble,” Phys. Rev. Lett. 110, 250503 (2013). [CrossRef] [PubMed]
  13. J. Van Wyk, E. Reynhardt, G. High, I. Kiflawi, “The dependences of ESR line widths and spin-spin relaxation times of single nitrogen defects on the concentration of nitrogen defects in diamond,” J. Phys. D Appl. Phys. 30, 1790 (1997). [CrossRef]
  14. W. Gao, X.-D. Tan, M.-F. Wang, Y.-Z. Zheng, “Quantum memory with natural inhomogeneous broadening in an optical cavity,” Int. J. Theor. Phys. 52, 2092–2098 (2013). [CrossRef]
  15. S. A. Moiseev, “Off-resonant raman-echo quantum memory for inhomogeneously broadened atoms in a cavity,” Phys. Rev. A 88, 012304 (2013). [CrossRef]
  16. L. Allen, J. Eberly, Optical Resonance and Two-Level Atoms (Courier Dover, 1987).
  17. S. L. McCall, E. L. Hahn, “Self-induced transparency by pulsed coherent light,” Phys. Rev. Lett. 18, 908–911 (1967). [CrossRef]
  18. S. A. Moiseev, “Quantum memory for intense light fields in photon echo technique,” Izv. Ross. Akad. Nauk, Ser. Fiz. 68, 1260 (2004).
  19. J. Ruggiero, J.-L. Le Gouët, C. Simon, T. Chanelière, “Why the two-pulse photon echo is not a good quantum memory protocol,” Phys. Rev. A 79, 053851 (2009). [CrossRef]
  20. P. Drummond, “Optical bistability in a radially varying mode,” IEEE J. Quantum Electron. 17, 301–306 (1981). [CrossRef]
  21. S. Zakharov, “Interaction of ultrashort light pulses with thin-film resonant structures,” Zh. Eksp. Teor. Fiz 108, 829–841 (1995).
  22. V. A. Goryachev, S. M. Zakharov, “Dynamics of transmission of ultrashort light pulses by thin-film cavity structures,” Quantum Electron. 27, 245–248 (1997). [CrossRef]
  23. S. Stenholm, W. E. Lamb, “Semiclassical theory of a high-intensity laser,” Phys. Rev. 181, 618–635 (1969). [CrossRef]
  24. F. Gires, P. Tournois, “Interfèromètre utilisable pour la compression d’impulsions lumineuses modulées en fréquence,” C. R. Acad. Sci. Paris 258, 6112–6115 (1964).
  25. D. M. Pozar, Microwave Engineering, 3 (John Wiley, 2005).
  26. C. Greiner, T. Wang, T. Loftus, T. W. Mossberg, “Instability and pulse area quantization in accelerated superradiant atom-cavity systems,” Phys. Rev. Lett. 87, 253602 (2001). [CrossRef] [PubMed]
  27. C. Greiner, B. Boggs, T. W. Mossberg, “Frustrated pulse-area quantization in accelerated superradiant atom-cavity systems,” Phys. Rev. A 67, 063811 (2003). [CrossRef]
  28. M. J. Collett, C. W. Gardiner, “Squeezing of intracavity and traveling-wave light fields produced in parametric amplification,” Phys. Rev. A 30, 1386–1391 (1984). [CrossRef]
  29. C. W. Gardiner, M. J. Collett, “Input and output in damped quantum systems: Quantum stochastic differential equations and the master equation,” Phys. Rev. A 31, 3761–3774 (1985). [CrossRef] [PubMed]
  30. D. F. Walls, G. J. Milburn, Quantum Optics (Springer, 1995).
  31. A. V. Gorshkov, A. André, M. D. Lukin, A. S. Sørensen, “Photon storage in λ-type optically dense atomic media. I. cavity model,” Phys. Rev. A 76, 033804 (2007). [CrossRef]
  32. B. Julsgaard, K. Mølmer, “Reflectivity and transmissivity of a cavity coupled to two-level systems: Coherence properties and the influence of phase decay,” Phys. Rev. A 85, 013844 (2012). [CrossRef]
  33. J. Eberly, “Area theorem rederived,” Opt. Express 2, 173–176 (1998). [CrossRef] [PubMed]
  34. L. Mandel, E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, 1995). [CrossRef]
  35. J. Ruggiero, T. Chanelière, J.-L. Le Gouët, “Coherent response to optical excitation in a strongly absorbing rare-earth ion-doped crystal,” J. Opt. Soc. Am. B 27, 32–37 (2010). [CrossRef]
  36. L. Viola, S. Lloyd, “Dynamical suppression of decoherence in two-state quantum systems,” Phys. Rev. A 58, 2733–2744 (1998). [CrossRef]
  37. C. P. Slichter, Principles of Magnetic Resonance (Springer, 1990), Vol. 1. [CrossRef]
  38. K. Ichimura, H. Goto, “Normal-mode coupling of rare-earth-metal ions in a crystal to a macroscopic optical cavity mode,” Phys. Rev. A 74, 033818 (2006). [CrossRef]
  39. H. Goto, S. Nakamura, K. Ichimura, “Experimental determination of intracavity losses of monolithic Fabry-Perot cavities made of Pr3+:Y2SiO5,” Opt. Express 18, 23763–23775 (2010). [CrossRef] [PubMed]
  40. M. Sabooni, Q. Li, L. Rippe, S. Kröll, “Three orders of magnitude cavity-linewidth narrowing by slow light in a rare-earth-ion-doped crystal cavity,” arXiv preprint arXiv:1304.4456 (2013).
  41. V. Damon, M. Bonarota, A. Louchet-Chauvet, T. Chanelière, J.-L. Le Gouët, “Revival of silenced echo and quantum memory for light,” New J. Phys. 13, 093031 (2011). [CrossRef]
  42. F. C. Spano, W. S. Warren, “Preparation of constant-bandwidth total inversion, independent of optical density, with phase-modulated laser pulses,” Phys. Rev. A 37, 1013–1016 (1988). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited