OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 4 — Feb. 24, 2014
  • pp: 4453–4465

Optimal electromagnetic energy transmission and real-time dissipation in extended media

S. Glasgow and M. Ware  »View Author Affiliations

Optics Express, Vol. 22, Issue 4, pp. 4453-4465 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1113 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Pulse reshaping effects that give rise to fast and slow light phenomena are inextricably linked to the dynamics of energy exchange between the pulse and the propagation medium. Energy that is dissipated from the pulse can no longer participate in this exchange process, but previous methods of calculating real-time dissipation are not valid for extended propagation media. We present a method for calculating real-time dissipation that is valid for electromagnetic pulse propagation in extended media. This method allows one to divide the energy stored in an extended medium into the portion that can be later transmitted out of the medium, and that portion which must be lost to either dissipation or reflection.

© 2014 Optical Society of America

OCIS Codes
(260.2030) Physical optics : Dispersion
(260.2110) Physical optics : Electromagnetic optics
(350.5500) Other areas of optics : Propagation

ToC Category:
Slow and Fast Light

Original Manuscript: January 3, 2014
Revised Manuscript: February 11, 2014
Manuscript Accepted: February 12, 2014
Published: February 19, 2014

S. Glasgow and M. Ware, "Optimal electromagnetic energy transmission and real-time dissipation in extended media," Opt. Express 22, 4453-4465 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. V. Hau, S. E. Harris, Z. Dutton, C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598 (1999). [CrossRef]
  2. M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, M. O. Scully, “Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” Phys. Rev. Lett. 82, 5229–5232 (1999). [CrossRef]
  3. S. Inouye, R. F. Löw, S. Gupta, T. Pfau, A. Görlitz, T. L. Gustavson, D. E. Pritchard, W. Ketterle, “Amplification of light and atoms in a bose-einstein condensate,” Phys. Rev. Lett. 85, 4225–4228 (2000). [CrossRef] [PubMed]
  4. S.-W. Chang, S.-L. Chuang, P.-C. Ku, C. J. Chang-Hasnian, P. Palinginis, H. Wang, “Slow light using excitonic population oscillation,” Phys. Rev. B 70, 235333 (2004). [CrossRef]
  5. J. Sharping, Y. Okawachi, A. Gaeta, “Wide bandwidth slow light using a raman fiber amplifier,” Opt. Express 13, 6092–6098 (2005). [CrossRef] [PubMed]
  6. R. Camacho, M. Pack, J. Howell, R. Boyd, “Wide-bandwidth, tunable, multiple-pulse-width optical delays using slow light in cesium vapor,” Phys. Rev. Lett. 98, 153601 (2007). [CrossRef] [PubMed]
  7. R. W. Boyd, “Slow and fast light: fundamentals and applications,” J. Mod. Opt. 56, 1908–1915 (2009). [CrossRef]
  8. Z. Shi, R. W. Boyd, D. J. Gauthier, C. C. Dudley, “Enhancing the spectral sensitivity of interferometers using slow-light media,” Opt. Lett. 32, 915–917 (2007). [CrossRef] [PubMed]
  9. F. Xia, L. Skaric, Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1, 65–71 (2007). [CrossRef]
  10. M. Ware, S. Glasgow, J. Peatross, “Role of group velocity in tracking field energy in linear dielectrics,” Opt. Express 9, 506–518 (2001). [CrossRef] [PubMed]
  11. V. S. Zapasskii, G. G. Kozlov, “A saturable absorber, coherent population oscillations, and slow light,” Opt. Spectrosc. 100, 419–424 (2006). [CrossRef]
  12. M. Ware, S. Glasgow, J. Peatross, “Energy transport in linear dielectrics,” Opt. Express 9, 519–532 (2001). [CrossRef] [PubMed]
  13. S. Glasgow, M. Meilstrup, J. Peatross, M. Ware, “Real-time recoverable and irrecoverable energy in dispersive-dissipative dielectrics,” Phys. Rev. E 75, 016616 (2007). [CrossRef]
  14. S. A. Glasgow, M. Ware, “Real-time dissipation of optical pulses in passive dielectrics,” Phys. Rev. A 80, 043817 (2009). [CrossRef]
  15. G. Gentili, “Free enthalpies, free energies and norms for dielectrics with fading memory,” Continuum Mech. Thermodyn. 8, 201–214 (1996). [CrossRef]
  16. V. Berti, G. Gentili, “The minimum free energy for isothermal dielectrics with memory,” J. Non-Equilib. Thermodyn. 24, 154–176 (1999).
  17. M. Fabrizio, A. Morro, “Dissipativity and irreversibility of electromagnetic systems,” Math. Models Methods Appl. Sci. 10, 217–246 (2000). [CrossRef]
  18. L. Deseri, G. Gentili, M. Golden, “An explicit formula for the minimum free energy in linear viscoelasticity,” J. Elasticity 54, 141–185 (1999). [CrossRef]
  19. J. M. Golden, “Consequences of non-uniqueness in the free energy of materials with memory,” Int. J. Eng. Sci. 39, 53–70 (2001). [CrossRef]
  20. J. M. Golden, “A proposal concerning the physical rate of dissipation in materials with memory,” Q. Appl. Math. 63, 117–155 (2005).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MOV (3052 KB)     
» Media 2: MOV (2754 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited