OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 4 — Feb. 24, 2014
  • pp: 4466–4479

All-optical logic gate operating with single wavelength

Akihiro Fushimi and Takasumi Tanabe  »View Author Affiliations

Optics Express, Vol. 22, Issue 4, pp. 4466-4479 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (3009 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We design scalable all-optical logic gates that operate with the same input and output wavelength. We demonstrated the operation by using coupled mode equations, and investigated the impact of input power fluctuations and fabrication errors. We found that a wavelength fluctuation 0.3 times greater than the resonant wavelength width will degrade the operation of the system. Stronger coupling increases the wavelength tolerance. As regards coupling coefficient fluctuation, we found that the system is error-free when the fabrication precision is better than ± 5 nm. This study provides information on the required input power stability and tolerable fabrication errors of a scalable system, which moves the numerical study closer to practical realization.

© 2014 Optical Society of America

OCIS Codes
(230.3990) Optical devices : Micro-optical devices
(230.5750) Optical devices : Resonators
(250.5300) Optoelectronics : Photonic integrated circuits

ToC Category:
Integrated Optics

Original Manuscript: January 3, 2014
Revised Manuscript: February 1, 2014
Manuscript Accepted: February 11, 2014
Published: February 19, 2014

Akihiro Fushimi and Takasumi Tanabe, "All-optical logic gate operating with single wavelength," Opt. Express 22, 4466-4479 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. Nozaki, A. Shinya, S. Matsuo, Y. Suzaki, T. Segawa, T. Sato, Y. Kawaguchi, R. Takahashi, M. Notomi, “Ultralow-power all-optical RAM based on nanocavities,” Nat. Photonics 6(4), 248–252 (2012). [CrossRef]
  2. D. K. Armani, T. J. Kippenberg, S. M. Spillane, K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003). [CrossRef] [PubMed]
  3. V. R. Almeida, C. A. Barrios, R. R. Panepucci, M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004). [CrossRef] [PubMed]
  4. M. Pöllinger, A. Rauschenbeutel, “All-optical signal processing at ultra-low powers in bottle microresonators using the Kerr effect,” Opt. Express 18(17), 17764–17775 (2010). [CrossRef] [PubMed]
  5. M. Notomi, A. Shinya, S. Mitsugi, G. Kira, E. Kuramochi, T. Tanabe, “Optical bistable switching action of Si high-Q photonic-crystal nanocavities,” Opt. Express 13(7), 2678–2687 (2005). [CrossRef] [PubMed]
  6. L. Fan, J. Wang, L. T. Varghese, H. Shen, B. Niu, Y. Xuan, A. M. Weiner, M. Qi, “An all-silicon passive optical diode,” Science 335(6067), 447–450 (2012). [CrossRef] [PubMed]
  7. Y. Akahane, T. Asano, B. S. Song, S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003). [CrossRef] [PubMed]
  8. B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15(6), 998–1005 (1997). [CrossRef]
  9. M. Noshad, A. Abbasi, R. Ranjbar, and R. Kheradmand, “Novel all-optical logic gates based on photonic crystal structure,” in Journal of Physics: Conference Series350 (2012).
  10. A. Abbasi, M. Noshad, R. Ranjbar, R. Kheradmand, “Ultra compact and fast All Optical Flip Flop design in photonic crystal platform,” Opt. Commun. 285(24), 5073–5078 (2012). [CrossRef]
  11. P. Andalib, N. Granpayeh, “All-optical ultracompact photonic crystal AND gate based on nonlinear ring resonators,” J. Opt. Soc. Am. B 26(1), 10 (2009). [CrossRef]
  12. Y. Liu, F. Qin, Z.-M. Meng, F. Zhou, Q.-H. Mao, Z.-Y. Li, “All-optical logic gates based on two-dimensional low-refractive-index nonlinear photonic crystal slabs,” Opt. Express 19(3), 1945–1953 (2011). [CrossRef] [PubMed]
  13. M. W. Lee, C. Grillet, S. Tomljenovic-Hanic, D. Moss, B. J. Eggleton, X. Gai, S. Madden, D. Y. Choi, D. Bulla, and B. Luther-Davies, “High-Q Photonic Crystal Chalcogenide Cavities by Photosensitive Post Processing,” in in Advances in Optical Sciences Congress, OSA Technical Digest (CD) (Optical Society of America, 2009), paper PDPC2 (2009).
  14. C. J. Chen, J. Zheng, T. Gu, J. F. McMillan, M. Yu, G.-Q. Lo, D.-L. Kwong, C. W. Wong, “Selective tuning of high-Q silicon photonic crystal nanocavities via laser-assisted local oxidation,” Opt. Express 19(13), 12480–12489 (2011). [CrossRef] [PubMed]
  15. T.-J. Wang, Y.-H. Huang, H.-L. Chen, “Resonant-wavelength tuning of microring filters by oxygen plasma treatment,” Photonics Technol. Lett. IEEE 17(3), 582–584 (2005). [CrossRef]
  16. F. Xia, L. Sekaric, Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1(1), 65–71 (2007). [CrossRef]
  17. E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, T. Watanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett. 88(4), 041112 (2006). [CrossRef]
  18. T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, H. Taniyama, “Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity,” Nat. Photonics 1(1), 49–52 (2007). [CrossRef]
  19. M. Notomi, A. Shinya, K. Nozaki, T. Tanabe, S. Matsuo, E. Kuramochi, T. Sato, H. Taniyama, H. Sumikura, “Low-power nanophotonic devices based on photonic crystals towards dense photonic network on chip,” IET Circuits Devices Syst. 5(2), 84–93 (2011). [CrossRef]
  20. W. Yoshiki, T. Tanabe, “Analysis of bistable memory in silica toroid microcavity,” JOSA B 29(12), 3335–3343 (2012). [CrossRef]
  21. C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filters,” Quantum Electron. IEEE J. 35(9), 1322–1331 (1999). [CrossRef]
  22. A. Gondarenko, J. S. Levy, M. Lipson, “High confinement micron-scale silicon nitride high Q ring resonator,” Opt. Express 17(14), 11366–11370 (2009). [CrossRef] [PubMed]
  23. J. S. Levy, M. A. Foster, A. L. Gaeta, M. Lipson, “Harmonic generation in silicon nitride ring resonators,” Opt. Express 19(12), 11415–11421 (2011). [CrossRef] [PubMed]
  24. J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4(1), 37–40 (2010). [CrossRef]
  25. V. R. Almeida, R. R. Panepucci, M. Lipson, “Nanotaper for compact mode conversion,” Opt. Lett. 28(15), 1302–1304 (2003). [CrossRef] [PubMed]
  26. W. Yoshiki, T. Tanabe, “Add-drop system for Kerr bistable memory in silicon nitride microrings,” Opt. Express. submitted. (arXiv:1308.6042).
  27. T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, E. Kuramochi, “Fast bistable all-optical switch and memory on a silicon photonic crystal on-chip,” Opt. Lett. 30(19), 2575–2577 (2005). [CrossRef] [PubMed]
  28. A. R. Cowan, G. W. Rieger, J. F. Young, “Nonlinear transmission of 1.5 microm pulses through single-mode silicon-on-insulator waveguide structures,” Opt. Express 12(8), 1611–1621 (2004). [CrossRef] [PubMed]
  29. H. Takesue, N. Matsuda, E. Kuramochi, W. J. Munro, M. Notomi, “An on-chip coupled resonator optical waveguide single-photon buffer,” Nat. Commun.4,2725(2013).
  30. A. K. Erdamar, M. M. van Leest, S. J. Picken, and J. Caro, “Thermal tuning of a silicon photonic crystal cavity infilled with an elastomer,” in SPIE NanoScience + Engineering8095 (2011).
  31. Y. Liu, T. Chang, A. E. Craig, “Coupled mode theory for modeling microring resonators,” Opt. Eng. 44(8), 084601 (2005). [CrossRef]
  32. A. Yariv, “Critical coupling and its control in optical waveguide-ring resonator systems,” Photonics Technol. Lett. IEEE 14(4), 483–485 (2002). [CrossRef]
  33. G. Rieger, K. Virk, J. Young, “Nonlinear propagation of ultrafast 1.5 μm pulses in high-index-contrast silicon-on-insulator waveguides,” Appl. Phys. Lett. 84(6), 900–902 (2004). [CrossRef]
  34. T. Tanabe, K. Yamada, K. Nishiguchi, A. Shinya, E. Kuramochi, H. Inokawa, M. Notomi, T. Tsuchizawa, T. Watanabe, H. Fukuda, H. Shinojima, S. Itabashi, “Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities,” Appl. Phys. Lett. 90(3), 031115 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited