OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 4 — Feb. 24, 2014
  • pp: 4539–4546

Graphene-based passively mode-locked bidirectional fiber ring laser

Venkatesh Mamidala, R. I. Woodward, Y. Yang, H. H. Liu, and K. K. Chow  »View Author Affiliations


Optics Express, Vol. 22, Issue 4, pp. 4539-4546 (2014)
http://dx.doi.org/10.1364/OE.22.004539


View Full Text Article

Enhanced HTML    Acrobat PDF (1136 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present an all-fiber bidirectional passively mode-locked soliton laser with a graphene-based saturable absorber for the first time to the best of our knowledge. Our design includes a four-port circulator to introduce different sections of cavity for the two counter-propagating pulses, so they have distinct output characteristics. Simultaneous bidirectional operation is achieved by appropriately adjusting the net cavity birefringence and loss. In the clockwise direction, the laser emits ~750 fs pulses at 1561.6 nm, with a repetition rate of 7.68 MHz. In the counter clockwise direction, the central wavelength, pulse width, and repetition rate are 1561.0 nm, ~850 fs, and 6.90 MHz, respectively.

© 2014 Optical Society of America

OCIS Codes
(160.4330) Materials : Nonlinear optical materials
(060.3510) Fiber optics and optical communications : Lasers, fiber

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: November 5, 2013
Revised Manuscript: January 9, 2014
Manuscript Accepted: January 9, 2014
Published: February 20, 2014

Citation
Venkatesh Mamidala, R. I. Woodward, Y. Yang, H. H. Liu, and K. K. Chow, "Graphene-based passively mode-locked bidirectional fiber ring laser," Opt. Express 22, 4539-4546 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-4-4539


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, E. P. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B 65(2), 277–294 (1997). [CrossRef]
  2. M. E. Fermann, I. Hartl, “Ultrafast fiber laser technology,” IEEE J. Sel. Top. Quantum Electron. 15(1), 191–206 (2009). [CrossRef]
  3. F. Dausinger, H. Lubatschowski, and F. Lichtner, Femtosecond Technology for Technical and Medical Applications (Springer, 2004).
  4. V. J. Matsas, T. P. Newson, D. J. Richardson, D. N. Payne, “Self-starting passively mode-locked fiber ring soliton laser exploiting nonlinear polarization rotation,” Electron. Lett. 28(15), 1391–1393 (1992). [CrossRef]
  5. I. N. Iii, “All-fiber ring soliton laser mode locked with a nonlinear mirror,” Opt. Lett. 16(8), 539–541 (1991). [CrossRef] [PubMed]
  6. O. Okhotnikov, A. Grudinin, M. Pessa, “Ultra-fast fibre laser systems based on SESAM technology: New horizons and applications,” New J. Phys. 6, 177 (2004). [CrossRef]
  7. S. Y. Set, H. Yaguchi, Y. Tanaka, M. Jablonski, “Ultrafast fiber pulsed lasers incorporating carbon nanotubes,” IEEE J. Sel. Top. Quantum Electron. 10(1), 137–146 (2004). [CrossRef]
  8. Q. L. Bao, H. Zhang, Y. Wang, Z. H. Ni, Y. L. Yan, Z. X. Shen, K. P. Loh, D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009). [CrossRef]
  9. Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010). [CrossRef] [PubMed]
  10. A. Martinez and S. Yamashita, “Carbon nanotube-based photonic devices: Applications in nonlinear optics,” in Carbon Nanotubes Applications on Electron Devices, J. M. Marulanda, ed. (InTech, 2011), pp. 367–386.
  11. T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, A. C. Ferrari, “Nanotube-polymer composites for ultrafast photonics,” Adv. Mater. 21(38–39), 3874–3899 (2009). [CrossRef]
  12. X. Liu, D. Han, Z. Sun, C. Zeng, H. Lu, D. Mao, Y. Cui, F. Wang, “Versatile multi-wavelength ultrafast fiber laser mode-locked by carbon nanotubes,” Sci. Rep. 3, 2718 (2013). [PubMed]
  13. A. K. Geim, K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007). [CrossRef] [PubMed]
  14. F. Bonaccorso, Z. Sun, T. Hasan, A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010). [CrossRef]
  15. Z. Sun, T. Hasan, A. C. Ferrari, “Ultrafast lasers mode-locked by nanotubes and graphene,” Physica E 44(6), 1082–1091 (2012). [CrossRef]
  16. N. Buholz, M. Chodorow, “3.2-Acoustic wave amplitude modulation of a multimode ring laser,” IEEE J. Quantum Electron. 3(11), 454–459 (1967). [CrossRef]
  17. K. Kieu, M. Mansuripur, “All-fiber bidirectional passively mode-locked ring laser,” Opt. Lett. 33(1), 64–66 (2008). [CrossRef] [PubMed]
  18. C. M. Ouyang, P. Shum, K. Wu, J. H. Wong, H. Q. Lam, S. Aditya, “Bidirectional passively mode-locked soliton fiber laser with a four-port circulator,” Opt. Lett. 36(11), 2089–2091 (2011). [CrossRef] [PubMed]
  19. C. Zeng, X. Liu, L. Yun, “Bidirectional fiber soliton laser mode-locked by single-wall carbon nanotubes,” Opt. Express 21(16), 18937–18942 (2013). [CrossRef] [PubMed]
  20. D. Mao, X. Liu, D. Han, H. Lu, “Compact all-fiber laser delivering conventional and dissipative solitons,” Opt. Lett. 38(16), 3190–3193 (2013). [CrossRef] [PubMed]
  21. Y. Cui, X. Liu, “Graphene and nanotube mode-locked fiber laser emitting dissipative and conventional solitons,” Opt. Express 21(16), 18969–18974 (2013). [CrossRef] [PubMed]
  22. Y. Hernandez, V. Nicolosi, M. Lotya, F. M. Blighe, Z. Y. Sun, S. De, I. T. McGovern, B. Holland, M. Byrne, Y. K. Gun’Ko, J. J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A. C. Ferrari, J. N. Coleman, “High-yield production of graphene by liquid-phase exfoliation of graphite,” Nat. Nanotechnol. 3(9), 563–568 (2008). [CrossRef] [PubMed]
  23. R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008). [CrossRef] [PubMed]
  24. A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006). [CrossRef] [PubMed]
  25. M. A. Pimenta, G. Dresselhaus, M. S. Dresselhaus, L. G. Cançado, A. Jorio, R. Saito, “Studying disorder in graphite-based systems by Raman spectroscopy,” Phys. Chem. Chem. Phys. 9(11), 1276–1291 (2007). [CrossRef] [PubMed]
  26. D. Von der Linde, “Characterization of noise in continuously operating mode-locked lasers,” Appl. Phys., B Photophys. Laser Chem. 39(4), 201–217 (1986). [CrossRef]
  27. C. Hönninger, R. Paschotta, F. Morier-Genoud, M. Moser, U. Keller, “Q-switching stability limits of continuous-wave passive mode locking,” J. Opt. Soc. Am. B 16(1), 46–56 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited