OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 4 — Feb. 24, 2014
  • pp: 4575–4589

Laser beam complex amplitude measurement by phase diversity

Nicolas Védrenne, Laurent M. Mugnier, Vincent Michau, Marie-Thérèse Velluet, and Rudolph Bierent  »View Author Affiliations

Optics Express, Vol. 22, Issue 4, pp. 4575-4589 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1030 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The control of the optical quality of a laser beam requires a complex amplitude measurement able to deal with strong modulus variations and potentially highly perturbed wavefronts. The method proposed here consists in an extension of phase diversity to complex amplitude measurements that is effective for highly perturbed beams. Named camelot for Complex Amplitude MEasurement by a Likelihood Optimization Tool, it relies on the acquisition and processing of few images of the beam section taken along the optical path. The complex amplitude of the beam is retrieved from the images by the minimization of a Maximum a Posteriori error metric between the images and a model of the beam propagation. The analytical formalism of the method and its experimental validation are presented. The modulus of the beam is compared to a measurement of the beam profile, the phase of the beam is compared to a conventional phase diversity estimate. The precision of the experimental measurements is investigated by numerical simulations.

© 2014 Optical Society of America

OCIS Codes
(010.7350) Atmospheric and oceanic optics : Wave-front sensing
(100.3190) Image processing : Inverse problems
(100.5070) Image processing : Phase retrieval
(140.3295) Lasers and laser optics : Laser beam characterization
(280.4788) Remote sensing and sensors : Optical sensing and sensors

ToC Category:
Instrumentation, Measurement, and Metrology

Original Manuscript: November 22, 2013
Revised Manuscript: January 17, 2014
Manuscript Accepted: January 17, 2014
Published: February 20, 2014

Nicolas Védrenne, Laurent M. Mugnier, Vincent Michau, Marie-Thérèse Velluet, and Rudolph Bierent, "Laser beam complex amplitude measurement by phase diversity," Opt. Express 22, 4575-4589 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. B. Shack, B. C. Plack, “Production and use of a lenticular Hartmann screen (abstract),” J. Opt. Soc. Am. 61, 656 (1971).
  2. J. Primot, “Three-wave lateral shearing interferometer,” Appl. Opt. 32, 6242–6249 (1993). [CrossRef] [PubMed]
  3. D. L. Misell, “An examination of an iterative method for the solution of the phase problem in optics and electron optics: I. Test calculations,” J. Phys. D Appl. Phys. 6, 2200–2216 (1973). [CrossRef]
  4. R. A. Gonsalves, “Phase retrieval and diversity in adaptive optics,” Opt. Eng. 21, 829–832 (1982). [CrossRef]
  5. L. M. Mugnier, A. Blanc, J. Idier, “Phase diversity: a technique for wave-front sensing and for diffraction-limited imaging,” in Advances in Imaging and Electron Physics, P. Hawkes, ed. (Elsevier, 2006), Vol. 141, Chap. 1, pp. 1–76. [CrossRef]
  6. J.-F. Sauvage, T. Fusco, G. Rousset, C. Petit, “Calibration and pre-compensation of non-common path aberrations for extreme adaptive optics,” J. Opt. Soc. Am. A 24, 2334–2346 (2007). [CrossRef]
  7. S. Fourmaux, S. Payeur, A. Alexandrov, C. Serbanescu, F. Martin, T. Ozaki, A. Kudryashov, J. C. Kieffer, “Laser beam wavefront correction for ultra high intensities with the 200 tw laser system at the advanced laser light source,” Opt. Express 16, 11987–11994 (2008). [CrossRef] [PubMed]
  8. C. Roddier, F. Roddier, “Combined approach to the Hubble space telescope wave-front distortion analysis,” Appl. Opt. 32, 2992–3008 (1993). [CrossRef] [PubMed]
  9. R. W. Gerchberg, “Super-resolution through error energy reduction,” Opt. Acta 21, 709–720 (1974). [CrossRef]
  10. J. R. Fienup, J. C. Marron, T. J. Schulz, J. H. Seldin, “Hubble space telescope characterized by using phase-retrieval algorithms,” Appl. Opt. 32, 1747–1767 (1993). [CrossRef] [PubMed]
  11. J. R. Fienup, “Phase-retrieval algorithms for a complicated optical system,” Appl. Opt. 32, 1737–1746 (1993). [CrossRef] [PubMed]
  12. H. Stark, ed., Image Recovery: Theory and Application (Academic, 1987).
  13. J. R. Fienup, “Phase retrieval algorithms: a comparison,” Appl. Opt. 21, 2758–2769 (1982). [CrossRef] [PubMed]
  14. S. M. Jefferies, M. Lloyd-Hart, E. K. Hege, J. Georges, “Sensing wave-front amplitude and phase with phase diversity,” Appl. Opt. 41, 2095–2102 (2002). [CrossRef] [PubMed]
  15. P. Almoro, G. Pedrini, W. Osten, “Complete wavefront reconstruction using sequential intensity measurements of a volume speckle field,” Appl. Opt. 45, 8596–8605 (2006). [CrossRef] [PubMed]
  16. M. Agour, P. Almoro, C. Falldorf, “Investigation of smooth wave fronts using slm-based phase retrieval and a phase diffuser,” J. Eur. Opt. Soc. Rapid Publ. 7, 12046 (2012). [CrossRef]
  17. S. T. Thurman, J. R. Fienup, “Complex pupil retrieval with undersampled data,” J. Opt. Soc. Am. A 26, 2640–2647 (2009). [CrossRef]
  18. R. J. Noll, “Zernike polynomials and atmospheric turbulence,” J. Opt. Soc. Am. 66, 207–211 (1976). [CrossRef]
  19. J. Idier, ed., Bayesian Approach to Inverse Problems, Digital Signal and Image Processing Series (ISTE, 2008). [CrossRef]
  20. E. Thiébaut, “Optimization issues in blind deconvolution algorithms,” Proc. SPIE, 4847, 174–183.
  21. K. B. Petersen, M. S. Pedersen, “The matrix cookbook” (2008), Version 20081110.
  22. K. Kreutz-Delgado, “The Complex Gradient Operator and the CR-Calculus,” ArXiv e-prints (2009).
  23. B. Paul, J.-F. Sauvage, L. M. Mugnier, “Coronagraphic phase diversity: performance study and laboratory demonstration,” Astron. Astrophys. 552, 1–11 (2013). [CrossRef]
  24. A. Blanc, L. M. Mugnier, J. Idier, “Marginal estimation of aberrations and image restoration by use of phase diversity,” J. Opt. Soc. Am. A 20, 1035–1045 (2003). [CrossRef]
  25. V. Bagnoud, J. D. Zuegel, “Independent phase and amplitude control of a laser beam by use of a single-phase-only spatial light modulator,” Opt. Lett. 29, 295–297 (2004). [CrossRef] [PubMed]
  26. L. M. Mugnier, T. Fusco, J.-M. Conan, “MISTRAL: a myopic edge-preserving image restoration method, with application to astronomical adaptive-optics-corrected long-exposure images.” J. Opt. Soc. Am. A 21, 1841–1854 (2004). [CrossRef]
  27. J. J. Dolne, P. Menicucci, D. Miccolis, K. Widen, H. Seiden, F. Vachss, H. Schall, “Advanced image processing and wavefront sensing with real-time phase diversity,” Appl. Opt. 48, A30–A34 (2009). [CrossRef]
  28. T. Nishitsuji, T. Shimobaba, T. Sakurai, N. Takada, N. Masuda, T. Ito, “Fast calculation of fresnel diffraction calculation using amd gpu and opencl,” in Digital Holography and Three-Dimensional Imaging (Optical Society of America, 2011), p. DWC20.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited