OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 4 — Feb. 24, 2014
  • pp: 4599–4605

Self-bending of light in photorefractive semiconductors with hot-electron effect

Andrzej Ziółkowski  »View Author Affiliations

Optics Express, Vol. 22, Issue 4, pp. 4599-4605 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1153 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



This article analyzes nonlinear light propagation in semiconductors with bipolar conductivity and nonlinear transport of electrons. We show how the competition between electron and hole conductivity can influence light propagation, leading to the self-bending effect of optical beam trajectory, which depending on the value of trap compensation coefficient may be stationary or transient.

© 2014 Optical Society of America

OCIS Codes
(190.5330) Nonlinear optics : Photorefractive optics
(190.6135) Nonlinear optics : Spatial solitons

ToC Category:
Nonlinear Optics

Original Manuscript: November 25, 2013
Revised Manuscript: January 17, 2014
Manuscript Accepted: January 17, 2014
Published: February 20, 2014

Andrzej Ziółkowski, "Self-bending of light in photorefractive semiconductors with hot-electron effect," Opt. Express 22, 4599-4605 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Z. Chen, M. Segev, D. N. Christodoulides, “Optical spatial solitons: historical overview and recent advances,” Rep. Prog. Phys. 75(8), 086401 (2012). [CrossRef] [PubMed]
  2. Y. S. Kivshar, G. I. Stegeman, “Spatial optical solitons: Guiding light for future technologies,” Opt. Photonics News 13(2), 59–63 (2002). [CrossRef]
  3. E. DelRe, P. Di Porto, B. Crosignani, “Photorefractive solitons and their underlying nonlocal physics,” Prog. Opt. 53, 153–200 (2009). [CrossRef]
  4. S. Lan, M. F. Shih, M. Segev, “Self-trapping of one-dimensional and two-dimensional optical beams and induced waveguides in photorefractive KNbO3.,” Opt. Lett. 22(19), 1467–1469 (1997). [CrossRef] [PubMed]
  5. S. Lan, E. Delre, Z. G. Chen, M. F. Shih, M. Segev, “Directional coupler with soliton-induced waveguides,” Opt. Lett. 24(7), 475–477 (1999). [CrossRef] [PubMed]
  6. K. Pismennaya, O. Kashin, V. Matusevich, A. Kiessling, R. Kowarschik, “Beam self-trapping and self-bending dynamics in a strontium barium niobate crystal,” J. Opt. Soc. Am. B 25(2), 136–139 (2008). [CrossRef]
  7. J. Petter, C. Weilnau, C. Denz, A. Stepken, F. Kaiser, “Self-bending of photorefractive solitons,” Opt. Commun. 170(4-6), 291–297 (1999). [CrossRef]
  8. P. Günter and J. P. Huignard, Photorefractive Materials and Their Applications (Springer, 2007), Vol. III, Chap. 11.
  9. D. Wolfersberger, N. Khelfaoui, C. Dan, N. Fressengeas, H. Leblond, “Fast photorefractive self-focusing in InP:Fe semiconductor at infrared wavelengths,” Appl. Phys. Lett. 92(2), 021106 (2008). [CrossRef]
  10. M. Chauvet, S. A. Hawkins, G. J. Salamo, M. Segev, D. F. Bliss, G. Bryant, “Self-trapping of planar optical beams by use of the photorefractive effect in InP:Fe,” Opt. Lett. 21(17), 1333–1335 (1996). [CrossRef] [PubMed]
  11. T. Schwartz, Y. Ganor, T. Carmon, R. Uzdin, S. Shwartz, M. Segev, U. El-Hanany, “Photorefractive Solitons and Light-induced resonance control in semiconductor CdZnTe,” Opt. Lett. 27(14), 1229–1231 (2002). [CrossRef] [PubMed]
  12. K. Seeger, Semiconductor Physics (Springer, 2004), Chap. 4.
  13. S. M. Sze, Physics of Semiconductor Devices (Wiley-Interscience, 2006), Chap. 11.
  14. D. D. Nolte, S. Balasubramanian, M. R. Melloch, “Nonlinear charge transport in photorefractive semiconductor quantum wells,” Opt. Mater. 18(1), 199–203 (2001). [CrossRef]
  15. Q. N. Wang, R. M. Brubaker, D. D. Nolte, “Photorefractive phase shift induced by hot-electron transport: multiple-quantum-well structures,” J. Opt. Soc. Am. B 11(9), 1773–1779 (1994). [CrossRef]
  16. M. Wichtowski, E. Weinert-Rączka, “Temporal response of photorefractive multiple quantum wells in Franz–Keldysh geometry,” Opt. Commun. 281(5), 1233–1243 (2008). [CrossRef]
  17. A. Ziółkowski, “Temporal analysis of solitons in photorefractive semiconductors,” J. Opt. 14(3), 035202 (2012). [CrossRef]
  18. A. Ziółkowski, “A numerical approach to nonlinear propagation of light in photorefractive media,” Comput. Phys. Commun. 185(2), 504–511 (2014). [CrossRef]
  19. D. D. Nolte, Photorefractive Effects and Materials (Kluwer, 1995).
  20. S. Balasubramanian, I. Lahiri, Y. Ding, M. Melloch, D. Nolte, “Two-wave-mixing dynamics and nonlinear hot-electron transport in transverse-geometry photorefractive quantum wells studied by moving gratings,” Appl. Phys. B 68(5), 863–869 (1999). [CrossRef]
  21. C. Dari-Salisburgo, E. DelRe, E. Palange, “Molding and stretched evolution of optical solitons in cumulative nonlinearities,” Phys. Rev. Lett. 91(26), 263903 (2003). [CrossRef] [PubMed]
  22. E. DelRe, E. Palange, “Optical nonlinearity and existence conditions for quasi-steady-state photorefractive solitons,” J. Opt. Soc. Am. B 23(11), 2323–2327 (2006). [CrossRef]
  23. N. Fressengeas, J. Maufoy, G. Kugel, “Temporal behavior of bidimensional photorefractive bright spatial solitons,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 54(6), 6866–6875 (1996). [CrossRef] [PubMed]
  24. E. DelRe, A. D’Ercole, E. Palange, “Mechanisms supporting long propagation regimes of photorefractive solitons,” Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 71(3), 036610 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

Supplementary Material

» Media 1: MOV (788 KB)     
» Media 2: MOV (735 KB)     
» Media 3: MOV (738 KB)     
» Media 4: MOV (710 KB)     
» Media 5: MOV (441 KB)     
» Media 6: MOV (262 KB)     
» Media 7: MOV (671 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited