OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 4 — Feb. 24, 2014
  • pp: 4662–4670

1550-nm time-of-flight ranging system employing laser with multiple repetition rates for reducing the range ambiguity

Yan Liang, Jianhua Huang, Min Ren, Baicheng Feng, Xiuliang Chen, E Wu, Guang Wu, and Heping Zeng  »View Author Affiliations

Optics Express, Vol. 22, Issue 4, pp. 4662-4670 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (901 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrated a time-of-flight (TOF) ranging system employing laser pulses at 1550 nm with multiple repetition rates to decrease the range ambiguity, which was usually found in high-repetition TOF systems. The time-correlated single-photon counting technique with an InGaAs/InP avalanche photodiode based single-photon detector, was applied to record different arrival time of the scattered return photons from the non-cooperative target at different repetition rates to determine the measured distance, providing an effective and convenient method to increase the absolute range capacity of the whole system. We attained hundreds of meters range with millimeter accuracy by using laser pulses of approximately 10-MHz repetition rates.

© 2014 Optical Society of America

OCIS Codes
(030.5260) Coherence and statistical optics : Photon counting
(040.3780) Detectors : Low light level
(280.3400) Remote sensing and sensors : Laser range finder
(280.3640) Remote sensing and sensors : Lidar
(040.1345) Detectors : Avalanche photodiodes (APDs)

ToC Category:
Instrumentation, Measurement, and Metrology

Original Manuscript: December 19, 2013
Revised Manuscript: February 4, 2014
Manuscript Accepted: February 4, 2014
Published: February 20, 2014

Yan Liang, Jianhua Huang, Min Ren, Baicheng Feng, Xiuliang Chen, E Wu, Guang Wu, and Heping Zeng, "1550-nm time-of-flight ranging system employing laser with multiple repetition rates for reducing the range ambiguity," Opt. Express 22, 4662-4670 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Degnan, “Satellite laser ranging: current status and future prospects,” IEEE Trans. Geosci. Remote Sens. GE-23(4), 398–413 (1985). [CrossRef]
  2. J. Degnan, “Photon-counting multikilohertz microlaser altimeters for airborne and spaceborne topographic measurements,” J. Geodyn. 34(3-4), 503–549 (2002). [CrossRef]
  3. F. Chen, G. Brown, M. Song, “Overview of three dimensional shape measurement using optical methods,” Opt. Eng. 39(1), 10–22 (2000). [CrossRef]
  4. M. A. Albota, R. M. Heinrichs, D. G. Kocher, D. G. Fouche, B. E. Player, M. E. O’Brien, B. F. Aull, J. J. Zayhowski, J. Mooney, B. C. Willard, R. R. Carlson, “Three-dimensional imaging laser radar with a photon-counting avalanche photodiode array and microchip laser,” Appl. Opt. 41(36), 7671–7678 (2002). [CrossRef] [PubMed]
  5. R. E. Warburton, A. McCarthy, A. M. Wallace, S. Hernandez-Marin, R. H. Hadfield, S. W. Nam, G. S. Buller, “Subcentimeter depth resolution using a single-photon counting time-of-flight laser ranging system at 1550 nm wavelength,” Opt. Lett. 32(15), 2266–2268 (2007). [CrossRef] [PubMed]
  6. G. Buller, A. Wallace, “Recent advances in ranging and three-dimensional imaging using time-correlated single-photon counting,” IEEE J. Sel. Top. Quantum Electron. 13, 1006–1015 (2007). [CrossRef]
  7. K. Y. Shrestha, K. C. Slatton, W. E. Carter, T. K. Cossio, “Performance metrics for single-photon laser ranging,” IEEE Geosci. Remote Sens. Lett. 7(2), 338–342 (2010). [CrossRef]
  8. G. Buller, R. Harkins, A. McCarthy, P. Hiskett, G. MacKinnon, G. Smith, R. Sung, A. Wallace, R. Lamb, K. Ridley, J. Rarity, “Multiple wavelength time-of -flight sensor based on time-correlated single-photon counting,” Rev. Sci. Instrum. 76(8), 083112 (2005). [CrossRef]
  9. M. Albota, B. Aull, D. Fouche, R. Heinrichs, D. Kocher, R. Marino, J. Mooney, N. Newbury, M. O’Brien, B. Player, B. Willard, J. Zayhowski, “Three-dimensional imaging laser radars with Geiger-mode avalanche photodiode arrays,” Lincoln Lab. J. 13, 351–370 (2002).
  10. R. Hadfield, “Single-photon detectors for optical quantum information applications,” Nat. Photonics 3(12), 696–705 (2009). [CrossRef]
  11. A. McCarthy, N. J. Krichel, N. R. Gemmell, X. Ren, M. G. Tanner, S. N. Dorenbos, V. Zwiller, R. H. Hadfield, G. S. Buller, “Kilometer-range, high resolution depth imaging via 1560 nm wavelength single-photon detection,” Opt. Express 21(7), 8904–8915 (2013). [CrossRef] [PubMed]
  12. Z. Yuan, A. Sharpe, J. Dynes, A. Dixon, A. Shields, “Multi-gigahertz operation of photon counting InGaAs avalanche photodiodes,” Appl. Phys. Lett. 96(7), 071101 (2010). [CrossRef]
  13. X. Chen, E. Wu, G. Wu, H. Zeng, “Low-noise high-speed InGaAs/InP-based single-photon detector,” Opt. Express 18(7), 7010–7018 (2010). [CrossRef] [PubMed]
  14. N. Namekata, S. Adachi, S. Inoue, “1.5 GHz single-photon detection at telecommunication wavelengths using sinusoidally gated InGaAs/InP avalanche photodiode,” Opt. Express 17(8), 6275–6282 (2009). [CrossRef] [PubMed]
  15. J. Zhang, R. Thew, C. Barreiro, H. Zbinden, “Practical fast gate rate InGaAs/InP single-photon avalanche photodiodes,” Appl. Phys. Lett. 95(9), 091103 (2009). [CrossRef]
  16. Y. Liang, E. Wu, X. Chen, M. Ren, Y. Jian, G. Wu, H. Zeng, “Low-timing-jitter single-photon detection using 1-GHz sinusoidally gated InGaAs/InP avalanche photodiode,” IEEE Photonics Technol. Lett. 23(13), 887–889 (2011). [CrossRef]
  17. M. Ren, X. Gu, Y. Liang, W. Kong, E. Wu, G. Wu, H. Zeng, “Laser ranging at 1550 nm with 1-GHz sine-wave gated InGaAs/InP APD single-photon detector,” Opt. Express 19(14), 13497–13502 (2011). [CrossRef] [PubMed]
  18. P. A. Hiskett, C. S. Parry, A. McCarthy, G. S. Buller, “A photon-counting time-of-flight ranging technique developed for the avoidance of range ambiguity at gigahertz clock rates,” Opt. Express 16(18), 13685–13698 (2008). [CrossRef] [PubMed]
  19. N. J. Krichel, A. McCarthy, G. S. Buller, “Resolving range ambiguity in a photon counting depth imager operating at kilometer distances,” Opt. Express 18(9), 9192–9206 (2010). [CrossRef] [PubMed]
  20. S. Pellegrini, G. Buller, J. Smith, A. Wallace, S. Cova, “Laser-based distance measurement using picosecond resolution time-correlated single-photon counting,” Meas. Sci. Technol. 11(6), 712–716 (2000). [CrossRef]
  21. I. Coddington, W. Swann, L. Nenadovic, N. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited