OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 4 — Feb. 24, 2014
  • pp: 4678–4691

Comparative analysis of spectral coherence in microresonator frequency combs

Victor Torres-Company, David Castelló-Lurbe, and Enrique Silvestre  »View Author Affiliations

Optics Express, Vol. 22, Issue 4, pp. 4678-4691 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (8151 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Microresonator combs exploit parametric oscillation and nonlinear mixing in an ultrahigh-Q cavity. This new comb generator offers unique potential for chip integration and access to high repetition rates. However, time-domain studies reveal an intricate spectral coherence behavior in this type of platform. In particular, coherent, partially coherent or incoherent combs have been observed using the same microresonator under different pumping conditions. In this work, we provide a numerical analysis of the coherence dynamics that supports the above experimental findings and verify particular design rules to achieve spectrally coherent microresonator combs. A particular emphasis is placed in understanding the differences between so-called Type I and Type II combs.

© 2014 Optical Society of America

OCIS Codes
(030.1640) Coherence and statistical optics : Coherence
(320.7110) Ultrafast optics : Ultrafast nonlinear optics
(130.3990) Integrated optics : Micro-optical devices

ToC Category:
Coherence and Statistical Optics

Original Manuscript: December 26, 2013
Revised Manuscript: February 8, 2014
Manuscript Accepted: February 13, 2014
Published: February 20, 2014

Victor Torres-Company, David Castelló-Lurbe, and Enrique Silvestre, "Comparative analysis of spectral coherence in microresonator frequency combs," Opt. Express 22, 4678-4691 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000). [CrossRef] [PubMed]
  2. S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000). [CrossRef] [PubMed]
  3. T. W. Hänsch, “Nobel Lecture: Passion for precision,” Rev. Mod. Phys. 78, 1297–1309 (2006). [CrossRef]
  4. N. R. Newbury, “Searching for applications with a fine-tooth comb,” Nature Photon. 5, 186–188 (2011). [CrossRef]
  5. V. Torres-Company, A. M. Weiner, “Optical frequency comb technology for ultra-broadband radio-frequency photonics,” Laser and Photon. Rev. (in press, 2013). DOI . [CrossRef]
  6. T. J. Kippenberg, R. Holzwarth, S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332, 555–559 (2011). [CrossRef] [PubMed]
  7. P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007). [CrossRef]
  8. A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, I. Solomatine, D. Seidel, L. Maleki, “Tunable optical frequency comb with a crystalline whispering gallery mode resonator,” Phys. Rev. Lett. 101, 093902 (2008). [CrossRef] [PubMed]
  9. W. Liang, A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, D. Seidel, L. Maleki, “Generation of near-infrared frequency combs from a MgF2 whispering gallery mode resonator,” Opt. Lett. 36, 2290–2292 (2011). [CrossRef] [PubMed]
  10. L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, D. J. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4, 41–45 (2010). [CrossRef]
  11. J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4, 37–40 (2010). [CrossRef]
  12. H. Jung, C. Xiong, K. Y. Fong, X. F. Zhang, H. X. Tang, “Optical frequency comb generation from aluminum nitride microring resonator,” Opt. Lett. 38, 2810–2813 (2013). [CrossRef] [PubMed]
  13. Y. Okawachi, K. Saha, J. S. Levy, Y. H. Wen, M. Lipson, A. L. Gaeta, “Octave-spanning frequency comb generation in a silicon nitride chip,” Opt. Lett. 36, 3398–3400 (2011). [CrossRef] [PubMed]
  14. P. Del’Haye, T. Herr, E. Garvatin, M. L. Gorodetsky, R. Holzwarth, T. J. Kippenberg, “Octave spanning tunable frequency comb from a microresonator,” Phys. Rev. Lett. 107, 063901 (2011). [CrossRef]
  15. M. A. Foster, A. C. Turner, R. Salem, M. Lipson, A. L. Gaeta, “Broad-band continuous-wave parametric wavelength conversion in silicon nanowaveguides,” Opt. Express 15, 12949–12958 (2007). [CrossRef] [PubMed]
  16. L. Zhang, Y. Yue, R. G. Beausoleil, A. E. Willner, “Analysis and engineering of chromatic dispersion in silicon waveguide bends and ring resonators,” Opt. Express 19, 8102–8107 (2011). [CrossRef] [PubMed]
  17. J. Riemensberger, K. Hartinger, T. Herr, V. Brasch, R. Holzwarth, T. J. Kippenberg, “Dispersion engineering of thick high-Q silicon nitride ring-resonators via atomic layer deposition,” Opt. Express 20, 27661–27669 (2012). [CrossRef] [PubMed]
  18. I. S. Grudinin, L. Baumgartel, N. Yu, “Frequency comb from a microresonator with engineered spectrum,” Opt. Express 20, 6604–6609 (2012). [CrossRef] [PubMed]
  19. J. Li, H. Lee, T. Chen, K. J. Vahala, “Low-pump-power, low-phase-noise, and microwave to millimeter-wave repetition rate operation in microcombs,” Phys. Rev. Lett. 109, 233901 (2012). [CrossRef]
  20. A. A. Savchenko, A. B. Matsko, W. Liang, V. S. Ilchenko, D. Seidel, L. Maleki, “Kerr combs with selectable central frequency,” Nature Photon. 5, 293–296 (2011). [CrossRef]
  21. K. Saha, Y. Okawachi, J. S. Levy, R. K. W. Lau, K. Luke, M. A. Foster, M. Lipson, A. L. Gaeta, “Broadband parametric frequency comb generation with a 1 μm pump source,” Opt. Express 20, 26935–26941 (2012). [CrossRef] [PubMed]
  22. C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Hänsch, N. Picque, T. J. Kippenberg, “Mid-infrared optical frequency combs at 2.5 μm based on crystalline microresonators,” Nature Commun. 4, 1345 (2013). [CrossRef]
  23. D. J. Moss, R. Morandotti, A. L. Gaeta, M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7, 597–607 (2013). [CrossRef]
  24. F. Ferdous, H. X Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat. Photonics 5, 770–776 (2011). [CrossRef]
  25. S. B. Papp, S. A. Diddams, “Spectral and temporal characterization of a fused-quartz-microresonator optical frequency comb,” Phys. Rev. A 84, 053833 (2011). [CrossRef]
  26. S. T. Cundiff, A. M. Weiner, “Optical arbitrary waveform generation,” Nat. Photonics 4, 760–766 (2010). [CrossRef]
  27. F. Ferdous, H. X. Miao, P. H. Wang, D. E. Leaird, K. Srinivasan, L. Chen, V. Aksyuk, A. M. Weiner, “Probing coherence in microcavity frequency combs via optical pulse shaping,” Opt. Express 20, 21033–21043 (2012). [CrossRef] [PubMed]
  28. P. H. Wang, F. Ferdous, H. X Miao, J. Wang, D. E. Leaird, K. Srinivasan, L. Chen, V. Aksyuk, A. M. Weiner, “Observation of correlation between route to formation, coherence, noise, and communication performance of Kerr combs,” Opt. Express 20, 29284–29295 (2012). [CrossRef]
  29. T. Herr, K. Hartinger, J. Riemesberger, C. Y. Wang, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, T. J. Kippenberg, “Universal formation dynamics and noise of Kerr-frequency combs in microresonators,” Nat. Photonics 6, 480–487 (2012). [CrossRef]
  30. A. B. Matsko, A. A. Savchenko, D. Strekalov, V. S. Ilchenko, L. Maleki, “Optical hyperparametric oscillations in a whispering-gallery-mode resonator: Threshold and phase diffusion,” Phys. Rev. A 71, 033804 (2005). [CrossRef]
  31. Y. K. Chembo, N. Yu, “Modal expansion approach to optical-frequency-comb generation with monolithic whispering-gallery-mode resonators,” Phys. Rev. A 82, 033801 (2010). [CrossRef]
  32. A. B. Matsko, A. A. Savchenko, W. Liang, V. S. Ilchenko, D. Seidel, L. Maleki, “Mode-locked Kerr frequency combs,” Opt. Lett. 36, 2845–2847 (2011). [CrossRef] [PubMed]
  33. A. B. Matsko, A. A. Savchenko, V. S. Ilchenko, D. Seidel, L. Maleki, “Hard and soft excitation regimes of Kerr frequency combs,” Phys. Rev. A 85, 023830 (2012). [CrossRef]
  34. Y. K. Chembo, C. R. Menyuk, “Spatiotemporal Lugiato-Lefever formalism for Kerr-comb generation in whispering gallery-mode resonators,” Phys. Rev. A 87, 053852 (2013). [CrossRef]
  35. S. Coen, H. G. Randle, T. Sylvestre, M. Erkintalo, “Modeling of octave-spanning Kerr frequency combs using a generalized mean-field Lugiato-Lefever model,” Opt. Lett. 38, 37–39 (2013). [CrossRef] [PubMed]
  36. T. Hansson, D. Modotto, S. Wabnitz, “Dynamics of the modulation instability in microresonator frequency combs,” Phys. Rev. A 88, 023819 (2013). [CrossRef]
  37. C. Godey, I. Balakireva, A. Colleit, Y. K Chembo, “Stability analysis of the Lugiato-Lefever model for Kerr optical frequency combs. Part I: case of normal dispersion,” arXiv: 1308.2539.
  38. S. Coen, M. Erkintalo, “Universal scaling laws of Kerr frequency combs,” Opt. Lett. 38, 1790–1792 (2013). [CrossRef] [PubMed]
  39. A. B. Matsko, W. Liang, A. A. Savchenko, L. Maleki, “Chaotic dynamics of frequency combs generated with continuously pumped nonlinear microresonators,” Opt. Lett. 38, 525–527 (2013). [CrossRef] [PubMed]
  40. T. J. Kippenberg, S. M. Spillane, K. J. Vahala, “Kerr-nonlinearity optical parametric oscillation in ultrahigh-Q toroid microcavity,” Phys. Rev. Lett. 93, 083904 (2004). [CrossRef]
  41. L. A. Lugiato, R. Lefever, “Spatial dissipative structures in passive optical systems,” Phys. Rev. Lett. 58, 2209–2211 (1987). [CrossRef] [PubMed]
  42. T. Herr, V. Brasch, J. D. Jost, C. Y. Wang, N. M. Kondratiev, M. L. Gorodetsky, T. J. Kippenberg, “Temporal solitons in optical microresonators,” Nat. Photonics 8, 145–152 (2014). [CrossRef]
  43. F. Leo, S. Coen, P. Kockaert, S. P. Goza, P. Emplit, M. Haelterman, “Temporal cavity solitons in one-dimensional Kerr media as bits in an all-optical buffer,” Nat. Photonics 4, 471–476 (2010). [CrossRef]
  44. H. Lajunen, V. Torres-Company, J. Lancis, E. Silvestre, P. Andres, “Pulse-by-pulse method to characterize partially coherent pulse propagation in instantaneous nonlinear media,” Opt. Express 18, 14979–14991 (2010). [CrossRef] [PubMed]
  45. M. Erkintalo, S. Coen, “Coherence properties of Kerr frequency combs,” Opt. Lett. 39, 283–286 (2014). [CrossRef]
  46. M. Haelterman, S. Trillo, S. Wabnitz, “Additive-modulation-instability ring laser in the normal dispersion regime of a fiber,” Opt. Lett. 17, 745–747 (1992). [CrossRef] [PubMed]
  47. I. V. Barashenkov, Y. S. Smirnov, “Existence and stability chart for the ac-driven, damped nonlinear Schrodinger solitons,” Phys. Rev. E 54, 5707–5725 (1996). [CrossRef]
  48. F. Leo, L. Gelens, P. Emplit, M. Haelterman, S. Coen, “Dynamics of one-dimensional Kerr cavity solitons,” Opt. Express 21, 9180–9191 (2013). [CrossRef] [PubMed]
  49. Y. K. Chembo, D. V. Strekalov, N. Yu, “Spectrum and dynamics of optical frequency combs generated with monolithic whispering gallery mode resonators,” Phys. Rev. Lett. 104, 103902 (2010). [CrossRef] [PubMed]
  50. J. M. Dudley, S. Coen, “Coherence properties of supercontinuum spectra generated in photonic crystal and tapered fibers,” Opt. Lett. 27, 1180–1182 (2002). [CrossRef]
  51. J. M. Dudley, G. Genty, S. Coen, “Supercontinuum generation in photonic crystal fibers,” Rev. Mod. Phys. 78, 1135–1184 (2006). [CrossRef]
  52. G. Genty, M Surakka, J. Turunen, A. T. Friberg, “Second-order coherence of supercontinuum light,” Opt. Lett. 35, 3057–3059 (2010). [CrossRef] [PubMed]
  53. T. Godin, B. Wetzel, T. Sylvestre, L. Larger, A. Kudlinski, A. Mussot, A. Ben Salem, M. Zghal, G. Genty, F. Dias, J. M. Dudley, “Real time noise and wavelength correlations in octave-spanning supercontinuum generation,” Opt. Express 21, 18452–18460 (2013). [CrossRef] [PubMed]
  54. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2007).
  55. M. R. E. Lamont, Y. Okawachi, A. L. Gaeta, “Route to stabilized ultrabroadband microresonator-based frequency combs,” Opt. Lett. 38, 3478–3481 (2013). [CrossRef] [PubMed]
  56. K. Saha, Y. Okawachi, B. Shim, J. S. Levy, R. Salem, A. R. Johnson, M. A. Foster, M. R. E. Lamont, M. Lipson, A. L. Gaeta, “Modelocking and femtosecond pulse generation in chip-based frequency combs,” Opt. Express 21, 1335–1343 (2013). [CrossRef] [PubMed]
  57. S. B. Papp, P. Del’Haye, S. A. Diddams, “Parametric seeding of a microresonator optical frequency comb,” Opt. Express 21, 17615–17624 (2013). [CrossRef] [PubMed]
  58. M. Peccianti, A. Pasquazi, Y. Park, B. E. Little, S. T. Chu, D. J. Moss, R. Morandotti, “Demonstration of a stable ultrafast laser based on a nonlinear microcavity,” Nature Commun. 3, 765 (2012). [CrossRef]
  59. P. Del’Haye, S. B. Papp, S. A. Diddams, “Self-injection locking and phase-locked states in microresonator-based optical frequency combs,” Phys. Rev. Lett. 112, 043905 (2014). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited