OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 4 — Feb. 24, 2014
  • pp: 4692–4698

Ultra-compact 32-channel drop filter with 100 GHz spacing

Yasushi Takahashi, Takashi Asano, Daiki Yamashita, and Susumu Noda  »View Author Affiliations

Optics Express, Vol. 22, Issue 4, pp. 4692-4698 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1532 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrated 32-channel drop filters with 100 GHz spacing consisting of arrayed nanocavities and a waveguide in a photonic crystal silicon slab. Changing the lattice constant of the nanocavities on the subnanometer scale successfully controlled the drop wavelengths at 100 GHz spacing in the wavelength range between 1510 and 1550 nm. The device size was as small as 15 μm × 270 μm, and the variation in drop wavelengths was less than 0.3 nm in terms of standard deviation. We also present a movie showing the operation of the drop filter, demonstrating that the arrayed nanocavities have the potential for developing ultracompact 100 GHz spaced filters in a dense wavelength division multiplexing system.

© 2014 Optical Society of America

OCIS Codes
(060.4230) Fiber optics and optical communications : Multiplexing
(130.3120) Integrated optics : Integrated optics devices
(250.3140) Optoelectronics : Integrated optoelectronic circuits
(230.5298) Optical devices : Photonic crystals

ToC Category:
Integrated Optics

Original Manuscript: January 13, 2014
Revised Manuscript: February 13, 2014
Manuscript Accepted: February 13, 2014
Published: February 20, 2014

Yasushi Takahashi, Takashi Asano, Daiki Yamashita, and Susumu Noda, "Ultra-compact 32-channel drop filter with 100 GHz spacing," Opt. Express 22, 4692-4698 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Y. Akahane, T. Asano, B. S. Song, S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003). [CrossRef] [PubMed]
  2. B. S. Song, S. Noda, T. Asano, Y. Akahane, “Ultra-High-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4(3), 207–210 (2005). [CrossRef]
  3. Y. Taguchi, Y. Takahashi, Y. Sato, T. Asano, S. Noda, “Statistical studies of photonic heterostructure nanocavities with an average Q factor of three million,” Opt. Express 19(12), 11916–11921 (2011). [CrossRef] [PubMed]
  4. H. Sekoguchi, Y. Takahashi, T. Asano, S. Noda, “Photonic crystal nanocavity with a Q-factor of ~9 million,” Opt. Express 22(1), 916–924 (2014). [CrossRef] [PubMed]
  5. E. Kuramochi, M. Notomi, S. Hughes, A. Shinya, T. Watanabe, L. Ramunno, “Disorder-induced scattering loss of line-defect waveguides in photonic crystal slabs,” Phys. Rev. B 72(16), 161318 (2005). [CrossRef]
  6. T. Tanabe, H. Sumikura, H. Taniyama, A. Shinya, M. Notomi, “All-silicon sub-Gb/s telecom detector with low dark current and high quantum efficiency on chip,” Appl. Phys. Lett. 96(10), 101103 (2010). [CrossRef]
  7. L. D. Haret, X. Checoury, Z. Han, P. Boucaud, S. Combrié, A. De Rossi, “All-silicon photonic crystal photoconductor on silicon-on-insulator at telecom wavelength,” Opt. Express 18(23), 23965–23972 (2010). [CrossRef] [PubMed]
  8. T. Tanabe, K. Nishiguchi, E. Kuramochi, M. Notomi, “Low power and fast electro-optic silicon modulator with lateral p-i-n embedded photonic crystal nanocavity,” Opt. Express 17(25), 22505–22513 (2009). [CrossRef] [PubMed]
  9. K. Debnath, L. O’Faolain, F. Y. Gardes, A. G. Steffan, G. T. Reed, T. F. Krauss, “Cascaded modulator architecture for WDM applications,” Opt. Express 20(25), 27420–27428 (2012). [CrossRef] [PubMed]
  10. Y. Takahashi, Y. Inui, M. Chihara, T. Asano, R. Terawaki, S. Noda, “A micrometre-scale Raman silicon laser with a microwatt threshold,” Nature 498(7455), 470–474 (2013). [CrossRef] [PubMed]
  11. M. Shinkawa, N. Ishikura, Y. Hama, K. Suzuki, T. Baba, “Nonlinear enhancement in photonic crystal slow light waveguides fabricated using CMOS-compatible process,” Opt. Express 19(22), 22208–22218 (2011). [CrossRef] [PubMed]
  12. H. C. Nguyen, N. Yazawa, S. Hashimoto, S. Otsuka, T. Baba, “Sub-100 μm Photonic Crystal Si Optical Modulators: Spectral, Athermal, and High-Speed Performance,” IEEE J. Sel. Top. Quantum Electron. 19(6), 127 (2013). [CrossRef]
  13. S. Fan, P. R. Villeneuve, J. D. Joannopoulos, “Channel drop tunneling through localized states,” Phys. Rev. Lett. 80(5), 960–963 (1998). [CrossRef]
  14. S. Noda, A. Chutinan, M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature 407(6804), 608–610 (2000). [CrossRef] [PubMed]
  15. A. Chutinan, M. Mochizuki, M. Imada, S. Noda, “Surface-emitting channel drop filters using single defects in two-dimensional photonic crystal slabs,” Appl. Phys. Lett. 79(17), 2690–2692 (2001). [CrossRef]
  16. B. S. Song, S. Noda, T. Asano, “Photonic devices based on in-plane hetero photonic crystals,” Science 300(5625), 1537 (2003). [CrossRef] [PubMed]
  17. Y. Akahane, T. Asano, B.-S. Song, S. Noda, “Investigation of high-Q channel drop filters using donor-type defects in two-dimensional photonic crystal slabs,” Appl. Phys. Lett. 83(8), 1512–1514 (2003). [CrossRef]
  18. Y. Akahane, T. Asano, H. Takano, B. S. Song, Y. Takana, S. Noda, “Two-dimensional photonic-crystal-slab channeldrop filter with flat-top response,” Opt. Express 13(7), 2512–2530 (2005). [CrossRef] [PubMed]
  19. H. Takano, B. S. Song, T. Asano, S. Noda, “Highly efficient multi-channel drop filter in a two-dimensional hetero photonic crystal,” Opt. Express 14(8), 3491–3496 (2006). [CrossRef] [PubMed]
  20. A. Shinya, S. Mitsugi, E. Kuramochi, M. Notomi, “Ultrasmall multi-port channel drop filter in two-dimensional photonic crystal on silicon-on-insulator substrate,” Opt. Express 14(25), 12394–12400 (2006). [CrossRef] [PubMed]
  21. B. S. Song, T. Nagashima, T. Asano, S. Noda, “Resonant-wavelength control of nanocavities by nanometer-scaled adjustment of two-dimensional photonic crystal slab structures,” IEEE Photon. Technol. Lett. 20(7), 532–534 (2008). [CrossRef]
  22. Q. Fang, T. Y. Liow, J. F. Song, K. W. Ang, M. B. Yu, G. Q. Lo, D. L. Kwong, “WDM multi-channel silicon photonic receiver with 320 Gbps data transmission capability,” Opt. Express 18(5), 5106–5113 (2010). [CrossRef] [PubMed]
  23. Q. Fang, Y. T. Phang, C. W. Tan, T. Y. Liow, M. B. Yu, G. Q. Lo, D. L. Kwong, “Multi-channel silicon photonic receiver based on ring-resonators,” Opt. Express 18(13), 13510–13515 (2010). [CrossRef] [PubMed]
  24. S. Park, K. J. Kim, I. G. Kim, G. Kim, “Si micro-ring MUX/DeMUX WDM filters,” Opt. Express 19(14), 13531–13539 (2011). [CrossRef] [PubMed]
  25. R. Terawaki, Y. Takahashi, M. Chihara, Y. Inui, S. Noda, “Ultrahigh-Q photonic crystal nanocavities in wide optical telecommunication bands,” Opt. Express 20(20), 22743–22752 (2012). [CrossRef] [PubMed]
  26. D. F. Edwards, “Silicon (Si),” in Handbook of Optical Constants of Solids vol. 1 E. D. Palik, ed. (Academic Press, 1985).
  27. H. Nishi, T. Tsuchizawa, R. Kou, H. Shinojima, T. Yamada, H. Kimura, Y. Ishikawa, K. Wada, K. Yamada, “Monolithic integration of a silica AWG and Ge photodiodes on Si photonic platform for one-chip WDM receiver,” Opt. Express 20(8), 9312–9321 (2012). [CrossRef] [PubMed]
  28. T. Asano, B. S. Song, S. Noda, “Analysis of the experimental Q factors (~ 1 million) of photonic crystal nanocavities,” Opt. Express 14(5), 1996–2002 (2006). [CrossRef] [PubMed]
  29. H. Hagino, Y. Takahashi, Y. Tanaka, T. Asano, S. Noda, “Effects of fluctuation in air hole radii and positions on optical characteristics in photonic crystal heterostructure nanocavities,” Phys. Rev. B 79(8), 085112 (2009). [CrossRef]
  30. C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filters,” IEEE J. Quantum Electron. 35(9), 1322–1331 (1999). [CrossRef]
  31. C. J. Chen, J. Zheng, T. Gu, J. F. McMillan, M. Yu, G. Q. Lo, D. L. Kwong, C. W. Wong, “Selective tuning of high-Q silicon photonic crystal nanocavities via laser-assisted local oxidation,” Opt. Express 19(13), 12480–12489 (2011). [CrossRef] [PubMed]
  32. A. Yokoo, T. Tanabe, E. Kuramochi, M. Notomi, “Ultrahigh-Q nanocavities written with a nanoprobe,” Nano Lett. 11(9), 3634–3642 (2011). [CrossRef] [PubMed]
  33. S. W. Jeon, J. K. Han, B. S. Song, S. Noda, “Glass-embedded two-dimensional silicon photonic crystal devices with a broad bandwidth waveguide and a high quality nanocavity,” Opt. Express 18(18), 19361–19366 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

Supplementary Material

» Media 1: AVI (1096 KB)     
» Media 2: AVI (2225 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited