OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 4 — Feb. 24, 2014
  • pp: 4699–4704

Optical vortex arrays from smectic liquid crystals

Baeksik Son, Sejeong Kim, Yun Ho Kim, K. Käläntär, Hwi-Min Kim, Hyeon-Su Jeong, Siyoung Q. Choi, Jonghwa Shin, Hee-Tae Jung, and Yong-Hee Lee  »View Author Affiliations

Optics Express, Vol. 22, Issue 4, pp. 4699-4704 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (3669 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate large-area, closely-packed optical vortex arrays using self-assembled defects in smectic liquid crystals. Self-assembled smectic liquid crystals in a three-dimensional torus structure are called focal conic domains. Each FCD, having a micro-scale feature size, produces an optical vortex with consistent topological charge of 2. The spiral profile in the interferometry confirms the formation of an optical vortex, which is predicted by Jones matrix calculations.

© 2014 Optical Society of America

OCIS Codes
(230.3720) Optical devices : Liquid-crystal devices
(050.4865) Diffraction and gratings : Optical vortices

ToC Category:
Optical Devices

Original Manuscript: January 13, 2014
Revised Manuscript: February 12, 2014
Manuscript Accepted: February 12, 2014
Published: February 20, 2014

Baeksik Son, Sejeong Kim, Yun Ho Kim, K. Käläntär, Hwi-Min Kim, Hyeon-Su Jeong, Siyoung Q. Choi, Jonghwa Shin, Hee-Tae Jung, and Yong-Hee Lee, "Optical vortex arrays from smectic liquid crystals," Opt. Express 22, 4699-4704 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. X. Cai, J. Wang, M. J. Strain, B. Johnson-Morris, J. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, S. Yu, “Integrated compact optical vortex beam emitters,” Science 338(6105), 363–366 (2012). [CrossRef] [PubMed]
  2. E. Brasselet, C. Loussert, “Electrically controlled topological defects in liquid crystals as tunable spin-orbit encoders for photons,” Opt. Lett. 36(5), 719–721 (2011). [CrossRef] [PubMed]
  3. M. Totzeck and H. J. Tiziani, “Phase-singularities in 2D diffraction fields and interference microscopy,” 138, 365-382 (1997). [CrossRef]
  4. V. G. Shvedov, A. V. Rode, Y. V. Izdebskaya, A. S. Desyatnikov, W. Krolikowski, Y. S. Kivshar, “Giant optical manipulation,” Phys. Rev. Lett. 105(11), 118103 (2010). [CrossRef] [PubMed]
  5. E. Nagali, F. Sciarrino, F. De Martini, B. Piccirillo, E. Karimi, L. Marrucci, E. Santamato, “Polarization control of single photon quantum orbital angular momentum states,” Opt. Express 17(21), 18745–18759 (2009). [CrossRef] [PubMed]
  6. G. Foo, D. M. Palacios, G. A. Swartzlander., “Optical vortex coronagraph,” Opt. Lett. 30(24), 3308–3310 (2005). [CrossRef] [PubMed]
  7. D. Voloschenko, O. D. Lavrentovich, “Optical vortices generated by dislocations in a cholesteric liquid crystal,” Opt. Lett. 25(5), 317–319 (2000). [CrossRef] [PubMed]
  8. L. Marrucci, C. Manzo, D. Paparo, “Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media,” Phys. Rev. Lett. 96(16), 163905 (2006). [CrossRef] [PubMed]
  9. N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, Z. Gaburro, “Light propagation with phase discontinuities: Generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011). [CrossRef] [PubMed]
  10. E. Brasselet, N. Murazawa, H. Misawa, S. Juodkazis, “Optical vortices from liquid crystal droplets,” Phys. Rev. Lett. 103(10), 103903 (2009). [CrossRef] [PubMed]
  11. C. Loussert, U. Delabre, E. Brasselet, “Manipulating the Orbital Angular Momentum of Light at The Micron Scale with Nematic Disclinations in a Liquid Crystal Film,” Phys. Rev. Lett. 111(3), 037802 (2013). [CrossRef] [PubMed]
  12. H. T. Dai, Y. J. Liu, D. Luo, X. W. Sun, “Propagation properties of an optical vortex carried by an Airy beam: experimental implementation,” Opt. Lett. 36(9), 1617–1619 (2011). [CrossRef] [PubMed]
  13. H. T. Dai, Y. J. Liu, D. Luo, X. W. Sun, “Propagation dynamics of an optical vortex imposed on an Airy beam,” Opt. Lett. 35(23), 4075–4077 (2010). [CrossRef] [PubMed]
  14. E. Brasselet, “Spin-orbit optical cross-phase-modulation,” Phys. Rev. A 82(6), 063836 (2010). [CrossRef]
  15. K. Ladavac, D. Grier, “Microoptomechanical pumps assembled and driven by holographic optical vortex arrays,” Opt. Express 12(6), 1144–1149 (2004). [CrossRef] [PubMed]
  16. C. R. Doerr, L. L. Buhl, “Circular grating coupler for creating focused azimuthally and radially polarized beams,” Opt. Lett. 36(7), 1209–1211 (2011). [CrossRef] [PubMed]
  17. A. Mair, A. Vaziri, G. Weihs, A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412(6844), 313–316 (2001). [CrossRef] [PubMed]
  18. D. P. Ghai, S. Vyas, P. Senthilkumaran, R. S. Sirohi, “Vortex lattice generation using interferometric techniques based on lateral shearing,” Opt. Commun. 282(14), 2692–2698 (2009). [CrossRef]
  19. E. Brasselet, M. Malinauskas, A. Žukauskas, S. Juodkazis, “Photopolymerized microscopic vortex beam generators: Precise delivery of optical orbital angular momentum,” Appl. Phys. Lett. 97(21), 211108 (2010). [CrossRef]
  20. E. Brasselet, A. Royon, L. Canioni, “Dense arrays of microscopic optical vortex generators from femtosecond direct laser writing of radial birefringence in glass,” Appl. Phys. Lett. 100(18), 181901 (2012). [CrossRef]
  21. B. Yang, E. Brasselet, “Arbitrary vortex arrays realized from optical winding of frustrated chiral liquid crystals,” J. Opt. 15(4), 044021 (2013). [CrossRef]
  22. E. Brasselet, “Tunable optical vortex arrays from a single nematic topological defect,” Phys. Rev. Lett. 108(8), 087801 (2012). [CrossRef] [PubMed]
  23. R. Barboza, U. Bortolozzo, G. Assanto, E. Vidal-Henriquez, M. G. Clerc, S. Residori, “Harnessing optical vortex lattices in nematic liquid crystals,” Phys. Rev. Lett. 111(9), 093902 (2013). [CrossRef] [PubMed]
  24. Y. H. Kim, D. K. Yoon, M. C. Choi, H. S. Jeong, M. W. Kim, O. D. Lavrentovich, H.-T. Jung, “Confined self-assembly of toric focal conic domains (the effects of confined geometry on the feature size of toric focal conic domains),” Langmuir 25(3), 1685–1691 (2009). [CrossRef] [PubMed]
  25. Y. H. Kim, D. K. Yoon, H. S. Jeong, O. D. Lavrentovich, H.-T. Jung, “Smectic liquid crystal defects for self-assembling of building blocks and their lithographic applications,” Adv. Funct. Mater. 21(4), 610–627 (2011). [CrossRef]
  26. F. Li, W. J. Doane, A. Jákli, “Magical Smectic Liquid Crystal Tube: Simple Illustration of Mechanical, Optical and Magnetic Properties of Smectic Liquid Crystals,” Jpn. J. Appl. Phys. 45(3A), 1714–1718 (2006). [CrossRef]
  27. C. Meyer, L. Le Cunff, M. Belloul, G. Foyart, “Focal Conic Stacking in Smectic A Liquid Crystals: Smectic Flower and Apollonius Tiling,” Materials 2(2), 499–513 (2009). [CrossRef]
  28. D. Mawet, E. Serabyn, K. Liewer, Ch. Hanot, S. McEldowney, D. Shemo, N. O’Brien, “Optical vectorial vortex coronagraphs using liquid crystal polymers: theory, manufacturing and laboratory demonstration,” Opt. Express 17(3), 1902–1918 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited