OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 4 — Feb. 24, 2014
  • pp: 4714–4722

Artificial TE-mode surface waves at metal surfaces mimicking surface plasmons

Zhijun Sun, Xiaoliu Zuo, Tengpeng Guan, and Wei Chen  »View Author Affiliations


Optics Express, Vol. 22, Issue 4, pp. 4714-4722 (2014)
http://dx.doi.org/10.1364/OE.22.004714


View Full Text Article

Enhanced HTML    Acrobat PDF (1163 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Manipulation of light in subwavelength scale can be realized with metallic nanostructures for TM-polarization components due to excitation of surface plasmons. TE-polarization components of light are usually excluded in subwavelength metal structures for mesoscopic optical interactions. Here we show that, by introducing very thin high index dielectric layers on structured metal surfaces, pseudo surface polarization currents can be induced near metal surfaces, which bring to excitation of artificial TE-mode surface waves at the composite meta-surfaces. This provides us a way to manipulate TE-polarized light in subwavelength scale. Typical properties of the artificial surface waves are further demonstrate for their excitation, propagation, optical transmission, and enhancement and resonances of the localized fields, mimicking those of surface plasmon waves.

© 2014 Optical Society of America

OCIS Codes
(240.6690) Optics at surfaces : Surface waves
(260.3910) Physical optics : Metal optics
(260.5430) Physical optics : Polarization
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
Plasmonics

History
Original Manuscript: October 14, 2013
Revised Manuscript: February 14, 2014
Manuscript Accepted: February 16, 2014
Published: February 21, 2014

Citation
Zhijun Sun, Xiaoliu Zuo, Tengpeng Guan, and Wei Chen, "Artificial TE-mode surface waves at metal surfaces mimicking surface plasmons," Opt. Express 22, 4714-4722 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-4-4714


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. L. Barnes, A. Dereux, T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003). [CrossRef] [PubMed]
  2. H. Raether, Surface Plasmons on Smooth and Rough Surface and on Gratings (Springer, 1988).
  3. S. I. Bozhevolnyi, ed., Plasmonic Nanoguides and Circuits (Pan Stanford, 2009).
  4. D. R. Smith, J. B. Pendry, M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004). [CrossRef] [PubMed]
  5. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006). [CrossRef] [PubMed]
  6. M. T. Flanagan, R. H. Pantell, “Surface plasmon resonance and immunosensors,” Electron. Lett. 20(23), 968–970 (1984). [CrossRef]
  7. R. J. Green, R. A. Frazier, K. M. Shakesheff, M. C. Davies, C. J. Roberts, S. J. Tendler, “Surface plasmon resonance analysis of dynamic biological interactions with biomaterials,” Biomaterials 21(18), 1823–1835 (2000). [CrossRef] [PubMed]
  8. S. Kawata, ed., Near Field Optics and Surface Plasmon Polaritons (Springer, 2001).
  9. N. Fang, H. Lee, C. Sun, X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005). [CrossRef] [PubMed]
  10. L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. U. S. A. 100(23), 13549–13554 (2003). [CrossRef] [PubMed]
  11. R. Ruppin, “Surface polaritons of a left-handed medium,” Phys. Lett. A 277(1), 61–64 (2000). [CrossRef]
  12. B. Reinhard, O. Paul, R. Beigang, M. Rahm, “Experimental and numerical studies of terahertz surface waves on a thin metamaterial film,” Opt. Lett. 35(9), 1320–1322 (2010). [CrossRef] [PubMed]
  13. N. Liu, S. Mukherjee, K. Bao, Y. Li, L. V. Brown, P. Nordlander, N. J. Halas, “Manipulating magnetic plasmon propagation in metallic nanocluster networks,” ACS Nano 6(6), 5482–5488 (2012). [CrossRef] [PubMed]
  14. F. García de Abajo, J. Sáenz, “Electromagnetic surface modes in structured perfect-conductor surfaces,” Phys. Rev. Lett. 95(23), 233901 (2005). [CrossRef] [PubMed]
  15. R. Sainidou, F. J. Garcia de Abajo, “Plasmon guided modes in nanoparticle metamaterials,” Opt. Express 16(7), 4499–4506 (2008). [CrossRef] [PubMed]
  16. I. P. Kaminow, W. L. Mammel, H. P. Weber, “Metal-clad optical waveguides: analytical and experimental study,” Appl. Opt. 13(2), 396–405 (1974). [CrossRef] [PubMed]
  17. A. Eguiluz, J. J. Quinn, “Hydrodynamic model for surface plasmons in metals and degenerate semiconductors,” Phys. Rev. B 14(4), 1347–1361 (1976). [CrossRef]
  18. C. Ciracì, J. B. Pendry, D. R. Smith, “Hydrodynamic model for plasmonics: a macroscopic approach to a microscopic problem,” ChemPhysChem 14(6), 1109–1116 (2013). [CrossRef] [PubMed]
  19. C. Schwartz, W. L. Schaich, “Hydrodynamic models of surface plasmons,” Phys. Rev. B 26(12), 7008–7011 (1982). [CrossRef]
  20. J. B. Pendry, L. Martín-Moreno, F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004). [CrossRef] [PubMed]
  21. N. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. Li, A. G. Davies, E. H. Linfield, F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nat. Mater. 9(9), 730–735 (2010). [CrossRef] [PubMed]
  22. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998). [CrossRef]
  23. J. A. Porto, F. J. García-Vidal, J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83(14), 2845–2848 (1999). [CrossRef]
  24. Z. Sun, Y. S. Jung, H. K. Kim, “Role of surface plasmons in the optical interaction in metallic gratings with narrow slits,” Appl. Phys. Lett. 83(15), 3021–3023 (2003). [CrossRef]
  25. Z. Sun, X. Zuo, “Tuning resonant optical transmission of metallic nanoslit arrays with embedded microcavities,” Opt. Lett. 34(9), 1411–1413 (2009). [CrossRef] [PubMed]
  26. Q. Cao, P. Lalanne, “Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits,” Phys. Rev. Lett. 88(5), 057403 (2002). [CrossRef] [PubMed]
  27. Y. J. Chen, E. S. Koteles, R. J. Seymour, G. J. Sonek, J. M. Ballantyne, “Surface plasmon on gratings: coupling in the minigap regions,” Solid State Commun. 46(2), 95–99 (1983). [CrossRef]
  28. D. Heitmann, N. Kroo, C. Schulz, Z. Szentirmay, “Dispersion anomalies of surface plasmons on corrugated metal-insulator interfaces,” Phys. Rev. B Condens. Matter 35(6), 2660–2666 (1987). [CrossRef] [PubMed]
  29. E. Moreno, L. Martín-Moreno, F. J. García-Vidal, “Extraordinary optical transmission without plasmonics: the s-polarization case,” J. Opt. A, Pure Appl. Opt. 8(4), S94–S97 (2006). [CrossRef]
  30. M. Guillaumée, A. Y. Nikitin, M. J. Klein, L. A. Dunbar, V. Spassov, R. Eckert, L. Martín-Moreno, F. J. García-Vidal, R. P. Stanley, “Observation of enhanced transmission for s-polarized light through a subwavelength slit,” Opt. Express 18(9), 9722–9727 (2010). [CrossRef] [PubMed]
  31. I. Schwarz, N. Livneh, R. Rapaport, “General closed-form condition for enhanced transmission in subwavelength metallic gratings in both TE and TM polarizations,” Opt. Express 20(1), 426–439 (2012). [CrossRef] [PubMed]
  32. K. C. Balram, D. A. B. Miller, “Self-aligned silicon fins in metallic slits as a platform for planar wavelength-selective nanoscale resonant photodetectors,” Opt. Express 20(20), 22735–22742 (2012). [CrossRef] [PubMed]
  33. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley, 1976).
  34. C. Ciracì, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science 337(6098), 1072–1074 (2012). [CrossRef] [PubMed]
  35. A. E. Miroshnichenko, W. Liu, D. Neshev, Y. S. Kivshar, A. I. Kuznetsov, Y. H. Fu, B. Luk’yanchuk, “Magnetic light: optical magnetism of dielectric nanoparticles,” Opt. Photonics News 23(12), 35 (2012). [CrossRef]
  36. N. Noginova, Y. Barnakov, H. Li, M. A. Noginov, “Effect of metallic surface on electric dipole and magnetic dipole emission transitions in Eu3+ doped polymeric film,” Opt. Express 17(13), 10767–10772 (2009). [CrossRef] [PubMed]
  37. S. Karaveli, R. Zia, “Spectral tuning by selective enhancement of electric and magnetic dipole emission,” Phys. Rev. Lett. 106(19), 193004 (2011). [CrossRef] [PubMed]
  38. S. Peng, C. Lei, Y. Ren, R. E. Cook, Y. Sun, “Plasmonic/magnetic bifunctional nanoparticles,” Angew. Chem. Int. Ed. Engl. 50(14), 3158–3163 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited