OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 4 — Feb. 24, 2014
  • pp: 4731–4737

Pr and F co-doped SnO2 transparent conductive films with high work function deposited by ion-assisted electron beam evaporation

Shaohang Wu, Yantao Li, Jinsong Luo, Jie Lin, Yi Fan, Zhihong Gan, and Xingyuan Liu  »View Author Affiliations

Optics Express, Vol. 22, Issue 4, pp. 4731-4737 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (2040 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A transparent conductive oxide (TCO) Pr and F co-doped SnO2 (PFTO) film is prepared by ion-assisted electron beam deposition. An optimized PFTO film shows a high average visible optical transmittance of 83.6% and a minimum electrical resistivity of 3.7 × 10−3 Ω·cm corresponding to a carrier density of 1.298 × 1020 cm−3 and Hall mobility of 12.99 cm2/V⋅s. This PFTO film shows a high work function of 5.147 eV and favorable surface morphology with an average roughness of 1.45 nm. Praseodymium fluoride is found to be an effective material to dope F into SnO2 that can simplify the fabrication process of SnO2-based TCO films.

© 2014 Optical Society of America

OCIS Codes
(310.6845) Thin films : Thin film devices and applications
(310.7005) Thin films : Transparent conductive coatings

ToC Category:

Original Manuscript: October 25, 2013
Revised Manuscript: February 1, 2014
Manuscript Accepted: February 16, 2014
Published: February 21, 2014

Shaohang Wu, Yantao Li, Jinsong Luo, Jie Lin, Yi Fan, Zhihong Gan, and Xingyuan Liu, "Pr and F co-doped SnO2 transparent conductive films with high work function deposited by ion-assisted electron beam evaporation," Opt. Express 22, 4731-4737 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. S. Ginley, C. Bright, “Transparent conducting oxides,” MRS Bull. 25(08), 15–18 (2000). [CrossRef]
  2. S. Ito, T. N. Murakami, P. Comte, P. Liska, C. Grätzel, M. K. Nazeeruddin, M. Grätzel, “Fabrication of thin film dye sensitized solar cells with solar to electric power conversion efficiency over 10%,” Thin Solid Films 516(14), 4613–4619 (2008). [CrossRef]
  3. T. Minami, “Transparent conducting oxide semiconductors for transparent electrodes,” Semicond. Sci. Technol. 20(4), S35–S44 (2005). [CrossRef]
  4. H. B. Li, N. Wang, X. Y. Liu, “Optical and electrical properties of Vanadium doped Indium oxide thin films,” Opt. Express 16(1), 194–199 (2008). [CrossRef] [PubMed]
  5. N. Wang, X. X. Liu, X. Y. Liu, “Ultraviolet luminescent, high-effective-work-function LaTiO3-doped indium oxide and its effects in organic optoelectronics,” Adv. Mater. 22(19), 2211–2215 (2010). [CrossRef] [PubMed]
  6. Y. Q. Liao, Q. P. Lu, Y. Fan, X. Y. Liu, “Manganese-doped indium oxide and its application in organic light-emitting diodes,” Appl. Phys. Lett. 99(2), 023302 (2011). [CrossRef]
  7. M. G. Helander, Z. B. Wang, J. Qiu, M. T. Greiner, D. P. Puzzo, Z. W. Liu, Z. H. Lu, “Chlorinated indium tin oxide electrodes with high work function for organic device compatibility,” Science 332(6032), 944–947 (2011). [CrossRef] [PubMed]
  8. D. S. Hecht, L. Hu, G. Irvin, “Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures,” Adv. Mater. 23(13), 1482–1513 (2011). [CrossRef] [PubMed]
  9. Y. Park, V. Choong, Y. Gao, B. Hsieh, C. W. Tang, “Work function of indium tin oxide transparent conductor measured by photoelectron spectroscopy,” Appl. Phys. Lett. 68(19), 2699–2701 (1996). [CrossRef]
  10. V. I. Adamovich, S. R. Cordero, P. I. Djurovich, A. Tamayo, M. E. Thompson, B. W. D’Andrade, S. R. Forrest, “New charge-carrier blocking materials for high efficiency OLEDs,” Org. Electron. 4(2–3), 77–87 (2003). [CrossRef]
  11. M. T. Greiner, M. G. Helander, W. M. Tang, Z. B. Wang, J. Qiu, Z. H. Lu, “Universal energy-level alignment of molecules on metal oxides,” Nat. Mater. 11(1), 76–81 (2012). [CrossRef] [PubMed]
  12. D. Milliron, I. Hill, C. Shen, A. Kahn, J. Schwartz, “Surface oxidation activates indium tin oxide for hole injection,” J. Appl. Phys. 87(1), 572–576 (2000). [CrossRef]
  13. I. D. Parker, “Carrier tunneling and device characteristics in polymer light-emitting diodes,” J. Appl. Phys. 75(3), 1656–1666 (1994). [CrossRef]
  14. G. Malliaras, J. Scott, “The roles of injection and mobility in organic light emitting diodes,” J. Appl. Phys. 83(10), 5399–5403 (1998). [CrossRef]
  15. Y. Shen, D. Jacobs, G. Malliaras, G. Koley, M. Spencer, A. Ioannidis, “Modification of indium tin oxide for improved hole injection in organic light emitting diodes,” Adv. Mater. 13(16), 1234–1238 (2001). [CrossRef]
  16. J.-M. Moon, J.-H. Bae, J.-A. Jeong, S.-W. Jeong, N.-J. Park, H.-K. Kim, J.-W. Kang, J.-J. Kim, M.-S. Yi, “Enhancement of hole injection using ozone treated Ag nanodots dispersed on indium tin oxide anode for organic light emitting diodes,” Appl. Phys. Lett. 90(16), 163516 (2007). [CrossRef]
  17. X. Cao, Y. Zhang, “Performance enhancement of organic light-emitting diodes by chlorine plasma treatment of indium tin oxide,” Appl. Phys. Lett. 100(18), 183304 (2012). [CrossRef]
  18. M. F. Lo, T. W. Ng, H. W. Mo, C. S. Lee, “Direct threat of a UV-Ozone treated indium-tin-oxide substrate to the stabilities of common organic semiconductors,” Adv. Funct. Mater. 23(13), 1718–1723 (2013). [CrossRef]
  19. P. K. Ho, J.-S. Kim, J. H. Burroughes, H. Becker, S. F. Li, T. M. Brown, F. Cacialli, R. H. Friend, “Molecular-scale interface engineering for polymer light-emitting diodes,” Nature 404(6777), 481–484 (2000). [CrossRef] [PubMed]
  20. C. Qiu, Z. Xie, H. Chen, M. Wong, H. S. Kwok, “Comparative study of metal or oxide capped indium-tin oxide anodes for organic light-emitting diodes,” J. Appl. Phys. 93(6), 3253–3258 (2003). [CrossRef]
  21. C.-W. Chu, S.-H. Li, C.-W. Chen, V. Shrotriya, Y. Yang, “High-performance organic thin-film transistors with metal oxide/metal bilayer electrode,” Appl. Phys. Lett. 87(19), 193508 (2005). [CrossRef]
  22. Z. Wang, M. Helander, M. Greiner, J. Qiu, Z. Lu, “Analysis of charge-injection characteristics at electrode-organic interfaces: Case study of transition-metal oxides,” Phys. Rev. B 80(23), 235325 (2009). [CrossRef]
  23. H. Aziz, Z. D. Popovic, N.-X. Hu, A.-M. Hor, G. Xu, “Degradation mechanism of small molecule-based organic light-emitting devices,” Science 283(5409), 1900–1902 (1999). [CrossRef] [PubMed]
  24. M. de Jong, L. Van Ijzendoorn, M. De Voigt, “Stability of the interface between indium-tin-oxide and poly (3, 4-ethylenedioxythiophene)/poly (styrenesulfonate) in polymer light-emitting diodes,” Appl. Phys. Lett. 77(14), 2255–2257 (2000). [CrossRef]
  25. X. Zhi, G. Zhao, T. Zhu, Y. Li, “The morphological, optical and electrical properties of SnO2: F thin films prepared by spray pyrolysis,” Surf. Interface Anal. 40(2), 67–70 (2008). [CrossRef]
  26. D. H. Zhang, H. L. Ma, “Scattering mechanisms of charge carriers in transparent conducting oxide films,” Appl. Phys. Adv. Mater. 62(5), 487–492 (1996).
  27. Y. Yang, Y. J. Zhang, X. D. Liu, Z. Q. Li, “Influence of Coulomb interaction on the electrical transport properties of ultrathin Al:ZnO films,” Appl. Phys. Lett. 100(26), 262101 (2012). [CrossRef]
  28. A. Takagi, K. Nomura, H. Ohta, H. Yanagi, T. Kamiya, M. Hirano, H. Hosono, “Carrier transport and electronic structure in amorphous oxide semiconductor, a-InGaZnO4,” Thin Solid Films 486(1–2), 38–41 (2005). [CrossRef]
  29. A. Andersson, N. Johansson, P. Bröms, N. Yu, D. Lupo, W. R. Salaneck, “Fluorine tin oxide as an alternative to indium tin oxide in polymer LEDs,” Adv. Mater. 10(11), 859–863 (1998). [CrossRef]
  30. M. T. Greiner, Z. H. Lu, “Thin-film metal oxides in organic semiconductor devices: their electronic structures, work functions and interfaces,” NPG Asia Mater. 5(7), e55 (2013). [CrossRef]
  31. E. Burstein, “The anomalous optical absorption limit in InSb,” Phys. Rev. 93(3), 632–633 (1954).
  32. T. S. Moss, “The interpretation of the properties of indium antimonide,” Proc. Phys. Soc. London Sect. B 67(10), 775–782 (1954). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited