OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 4 — Feb. 24, 2014
  • pp: 4779–4788

Sub-1 dB/cm submicrometer-scale amorphous silicon waveguide for backend on-chip optical interconnect

Ryohei Takei, Shoko Manako, Emiko Omoda, Youichi Sakakibara, Masahiko Mori, and Toshihiro Kamei  »View Author Affiliations


Optics Express, Vol. 22, Issue 4, pp. 4779-4788 (2014)
http://dx.doi.org/10.1364/OE.22.004779


View Full Text Article

Enhanced HTML    Acrobat PDF (2232 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate a submicrometer-scale hydrogenated amorphous silicon (a-Si:H) waveguide with a record low propagation loss of 0.60 ± 0.02 dB/cm because of the very low infrared optical absorption of our low defect a-Si:H film, the optimized waveguide structure and the fabrication process. The waveguide has a core with a thickness of 440 nm and a width of 780 nm that underlies a 100-nm-thick ridge structure, and is fabricated by low-cost i-line stepper photolithography and with low-temperature processing at less than 350°C, making it compatible with the backend process of complementary metal oxide semiconductor (CMOS) fabrication.

© 2014 Optical Society of America

OCIS Codes
(230.7370) Optical devices : Waveguides
(310.6860) Thin films : Thin films, optical properties

ToC Category:
Integrated Optics

History
Original Manuscript: December 11, 2013
Revised Manuscript: January 24, 2014
Manuscript Accepted: February 14, 2014
Published: February 21, 2014

Citation
Ryohei Takei, Shoko Manako, Emiko Omoda, Youichi Sakakibara, Masahiko Mori, and Toshihiro Kamei, "Sub-1 dB/cm submicrometer-scale amorphous silicon waveguide for backend on-chip optical interconnect," Opt. Express 22, 4779-4788 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-4-4779


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. A. Street, Technology and Application of Amorphous Silicon, (Springer, 2000).
  2. T. Kamei, B. M. Paegel, J. R. Scherer, A. M. Skelley, R. A. Street, R. A. Mathies, “Integrated hydrogenated amorphous Si photodiode detector for microfluidic bioanalytical devices,” Anal. Chem. 75(20), 5300–5305 (2003). [CrossRef] [PubMed]
  3. K. Narayanan, S. F. Preble, “Optical nonlinearities in hydrogenated-amorphous silicon waveguides,” Opt. Express 18(9), 8998–9005 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-18-9-8998 . [CrossRef] [PubMed]
  4. Y. Shoji, T. Ogasawara, T. Kamei, Y. Sakakibara, S. Suda, K. Kintaka, H. Kawashima, M. Okano, T. Hasama, H. Ishikawa, M. Mori, “Ultrafast nonlinear effects in hydrogenated amorphous silicon wire waveguide,” Opt. Express 18(6), 5668–5673 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-18-6-5668 . [CrossRef] [PubMed]
  5. C. Lacava, P. Minzioni, E. Baldini, L. Tartara, J. M. Fedeli, I. Cristiani, “Nonlinear characterization of hydrogenated amorphous silicon waveguides and analysis of carrier dynamics,” Appl. Phys. Lett. 103(14), 141103 (2013). [CrossRef]
  6. B. Kuyken, H. Ji, S. Clemmen, S. K. Selvaraja, H. Hu, M. Pu, M. Galili, P. Jeppesen, G. Morthier, S. Massar, L. K. Oxenløwe, G. Roelkens, R. Baets, “Nonlinear properties of and nonlinear processing in hydrogenated amorphous silicon waveguides,” Opt. Express 19(26), B146–B153 (2011), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-19-26-b146 . [CrossRef] [PubMed]
  7. K.-Y. Wang, K. G. Petrillo, M. A. Foster, A. C. Foster, “Ultralow-power all-optical processing of high-speed data signals in deposited silicon waveguides,” Opt. Express 20(22), 24600–24606 (2012), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-20-22-24600 . [CrossRef] [PubMed]
  8. S. Suda, K. Tanizawa, Y. Sakakibara, T. Kamei, K. Nakanishi, E. Itoga, T. Ogasawara, R. Takei, H. Kawashima, S. Namiki, M. Mori, T. Hasama, H. Ishikawa, “Pattern-effect-free all-optical wavelength conversion using a hydrogenated amorphous silicon waveguide with ultra-fast carrier decay,” Opt. Lett. 37(8), 1382–1384 (2012). [CrossRef] [PubMed]
  9. K. Narayanan, A. W. Elshaari, S. F. Preble, “Broadband all-optical modulation in hydrogenated-amorphous silicon waveguides,” Opt. Express 18(10), 9809–9814 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-18-10-9809 . [CrossRef] [PubMed]
  10. B. Kuyken, S. Clemmen, S. K. Selvaraja, W. Bogaerts, D. Van Thourhout, P. Emplit, S. Massar, G. Roelkens, R. Baets, “On-chip parametric amplification with 26.5 dB gain at telecommunication wavelengths using CMOS-compatible hydrogenated amorphous silicon waveguides,” Opt. Lett. 36(4), 552–554 (2011). [CrossRef] [PubMed]
  11. K. Furuya, R. Takei, T. Kamei, Y. Sakakibara, M. Mori, “Basic study of coupling on three-dimensional crossing of Si photonic wire waveguide for optical interconnection on inter or inner chip,” Jpn. J. Appl. Phys. 51(4S), 04DG12 (2012). [CrossRef]
  12. R. Takei, M. Suzuki, E. Omoda, S. Manako, T. Kamei, M. Mori, Y. Sakakibara, “Silicon knife-edge taper waveguide for ultralow-loss spot-size converter fabricated by photolithography,” Appl. Phys. Lett. 102(10), 101108 (2013). [CrossRef]
  13. R. Takei, E. Omoda, M. Suzuki, S. Manako, T. Kamei, M. Mori, Y. Sakakibara, “Low-loss optical interlayer transfer for three-dimensional optical interconnect,” in Proceedings of 10th International Conference on Group IV Photonics (Seoul, South Korea, 2013), pp. 91–92. [CrossRef]
  14. K. Furuya, K. Nakanishi, R. Takei, E. Omoda, M. Suzuki, M. Okano, T. Kamei, M. Mori, Y. Sakakibara, “Nanometer-scale thickness control of amorphous silicon using isotropic wet-etching and low loss wire waveguide fabrication with the etched material,” Appl. Phys. Lett. 100(25), 251108 (2012). [CrossRef]
  15. A. Harke, M. Krause, J. Mueller, “Low-loss singlemode amorphous silicon waveguides,” Elec. Lett. 41(25), 1377–1379 (2005). [CrossRef]
  16. D. K. Sparacin, R. Sun, A. M. Agarwal, M. A. Beals, J. Michel, L. C. Kimerling, “ Low loss amorphous silicon channel waveguides for integrated photonics,” in Proceedings of 3rd International Conference on Group IV Photonics (Ottawa, Canada, 2006), pp. 255–257. [CrossRef]
  17. B. Han, R. Orobtchouk, T. Benyattou, P. R. A. Binetti, S. Jeannot, J. M. Fedeli, X. J. M. Leijtens, “Comparison of optical passive integrated devices based on three materials for optical clock distribution,” in Proceedings of ECIO 07 (Copenhagen, Denmark, 2007), pp. 1–4.
  18. S. K. Selvaraja, E. Sleeckx, M. Schaekers, W. Bogaerts, D. V. Thourhout, P. Dumon, R. Baets, “Low-loss amorphous silicon-on-insulator technology for photonic integrated circuitry,” Opt. Commun. 282(9), 1767–1770 (2009). [CrossRef]
  19. R. Sun, J. Cheng, J. Michel, L. Kimerling, “Transparent amorphous silicon channel waveguides and high-Q resonators using a damascene process,” Opt. Lett. 34(15), 2378–2380 (2009). [CrossRef] [PubMed]
  20. S. Zhu, G. Q. Lo, D. L. Kwong, “Low-loss amorphous silicon wire waveguide for integrated photonics: effect of fabrication process and the thermal stability,” Opt. Express 18(24), 25283–25291 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-18-24-25283 . [CrossRef] [PubMed]
  21. J. Kang, Y. Atsumi, M. Oda, T. Amemiya, N. Nishiyama, S. Arai, “Low-loss Amorphous Silicon Multilayer Waveguides Vertically Stacked on Silicon-on-Insulator Substrate,” Jpn. J. Appl. Phys. 50(12R), 120208 (2011). [CrossRef]
  22. T. Lipka, O. Horn, J. Amthor, J. Müller, “Low-loss multilayer compatible a-Si:H optical thin films for photonic applications,” J. Europ. Opt. Soc. Rap. Public. 7, 12033 (2012). [CrossRef]
  23. S. Zhu, G. Q. Lo, W. Li, D. L. Kwong, “Effect of cladding layer and subsequent heat treatment on hydrogenated amorphous silicon waveguides,” Opt. Express 20(21), 23676–23683 (2012), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-20-21-23676 . [CrossRef] [PubMed]
  24. S. Rao, F. G. D. Corte, C. Sumonte, “Low-loss amorphous silicon waveguides grown by PECVD on indium tin oxide,” J. Europ. Opt. Soc. Rap. Public. 5, 10039s (2010). [CrossRef]
  25. T. Kamei, N. Hata, A. Matsuda, T. Uchiyama, S. Amano, K. Tsukamoto, Y. Yoshioka, T. Hirao, “Deposition and extensive light soaking of highly pure hydrogenated amorphous silicon,” Appl. Phys. Lett. 68(17), 2380 (1996). [CrossRef]
  26. T. Shimizu, H. Kidoh, M. Matsumoto, A. Morimoto, M. Kumeda, “Photo-created defects in a-Si:H as elucidated by ESR, LESR and CPM,” J. Non-Crys. Solids 114, 630–632 (1989).
  27. Z. E. Smith, S. Wagner, “Band tails, entropy, and equilibrium defects in hydrogenated amorphous silicon,” Phys. Rev. Lett. 59(6), 688–691 (1987). [CrossRef] [PubMed]
  28. R. Suzuki, Y. Kobayashi, T. Mikado, A. Matsuda, P. J. Mcelheny, S. Mashima, H. Ohgaki, M. Chiwaki, T. Yamazaki, T. Tomimasu, “Characterization of Hydrogenated Amorphous Silicon Films by a Pulsed Positron Beam,” Jpn. J. Appl. Phys. 30(10), 2438–2441 (1991). [CrossRef]
  29. P. Dong, W. Qian, S. Liao, H. Liang, C.-C. Kung, N.-N. Feng, R. Shafiiha, J. Fong, D. Feng, A. V. Krishnamoorthy, M. Asghari, “Low loss shallow-ridge silicon waveguides,” Opt. Express 18(14), 14474–14479 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-18-14-14474 . [CrossRef] [PubMed]
  30. F. Kail, S. Fellah, A. Abramov, A. Hadjadj, P. R. I. Cabarrocas, “Experimental evidence for extended hydrogen diffusion in silicon thin films during light-soaking,” J. Non-Crys. Solids 362, 1083–1086 (2006).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited