OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 4 — Feb. 24, 2014
  • pp: 4789–4798

Efficiency vs. multi-photon contribution test for quantum dots

Ana Predojević, Miroslav Ježek, Tobias Huber, Harishankar Jayakumar, Thomas Kauten, Glenn S. Solomon, Radim Filip, and Gregor Weihs  »View Author Affiliations


Optics Express, Vol. 22, Issue 4, pp. 4789-4798 (2014)
http://dx.doi.org/10.1364/OE.22.004789


View Full Text Article

Enhanced HTML    Acrobat PDF (856 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The development of linear quantum computing within integrated circuits demands high quality semiconductor single photon sources. In particular, for a reliable single photon source it is not sufficient to have a low multi-photon component, but also to possess high efficiency. We investigate the photon statistics of the emission from a single quantum dot with a method that is able to sensitively detect the trade-off between the efficiency and the multi-photon contribution. Our measurements show, that the light emitted from the quantum dot when it is resonantly excited possess a very low multi-photon content. Additionally, we demonstrated, for the first time, the non-Gaussian nature of the quantum state emitted from a single quantum dot.

© 2014 Optical Society of America

OCIS Codes
(000.1600) General : Classical and quantum physics
(270.0270) Quantum optics : Quantum optics
(270.5290) Quantum optics : Photon statistics

ToC Category:
Coherence and Statistical Optics

History
Original Manuscript: January 2, 2014
Revised Manuscript: February 11, 2014
Manuscript Accepted: February 13, 2014
Published: February 21, 2014

Citation
Ana Predojević, Miroslav Ježek, Tobias Huber, Harishankar Jayakumar, Thomas Kauten, Glenn S. Solomon, Radim Filip, and Gregor Weihs, "Efficiency vs. multi-photon contribution test for quantum dots," Opt. Express 22, 4789-4798 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-4-4789


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. Grangier, G. Roger, A. Aspect, “Experimental evidence for a photon anticorrelation effect on a beam splitter: A new light on single-photon interferences,” Europhys. Lett. 1, 173–179 (1986). [CrossRef]
  2. S. Scheel, “Single-photon sources-an introduction,” J. Mod. Opt. 56, 141–160 (2009). [CrossRef]
  3. E. Knill, R. Laflamme, G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001). [CrossRef] [PubMed]
  4. J. L. O’Brien, “Optical quantum computing,” Science 318, 1567–1570 (2007). [CrossRef]
  5. M. Varnava, D. E. Browne, T. Rudolph, “How good must single photon sources and detectors be for efficient linear optical quantum computation?,” Phys. Rev. Lett. 100,060502 (2008). [CrossRef] [PubMed]
  6. T. Jennewein, M. Barbieri, A. White, “Single-photon device requirements for operating linear optics quantum computing outside the post-selection basis,” J. Mod. Opt. 58, 276–287 (2011). [CrossRef]
  7. U. Leonhardt, Measuring the Quantum State of Light (Cambridge University, 1997).
  8. R. Glauber, Quantum Theory of Optical Coherence (Wiley-VCH, 2007).
  9. R. L. Hudson, “When is the Wigner quasi-probability density non-negative?,” Rep. Math. Phys. 6, 249–252 (1974). [CrossRef]
  10. A. I. Lvovsky, H. Hansen, T. Aichele, O. Benson, J. Mlynek, S. Schiller, “Quantum state reconstruction of the single-photon Fock state,” Phys. Rev. Lett. 87,050402 (2001). [CrossRef] [PubMed]
  11. R. Filip, L. Mišta, “Detecting quantum states with a positive Wigner function beyond mixtures of Gaussian states,” Phys. Rev. Lett. 106,200401 (2011). [CrossRef] [PubMed]
  12. Z. Y. Ou, S. F. Pereira, H. J. Kimble, “Quantum noise reduction in optical amplification,” Phys. Rev. Lett. 70, 3239–3242 (1993). [CrossRef] [PubMed]
  13. H. Vahlbruch, M. Mehmet, S. Chelkowski, B. Hage, A. Franzen, N. Lastzka, S. Goler, K. Danzmann, R. Schnabel, “Observation of squeezed light with 10-dB quantum-noise reduction,” Phys. Rev. Lett. 100,033602 (2008). [CrossRef] [PubMed]
  14. Y. Takeno, M. Yukawa, H. Yonezawa, A. Furusawa, “Observation of −9 dB quadrature squeezing with improvement of phase stability in homodyne measurement,” Optics Express 15, 4321–4327 (2007). [CrossRef]
  15. H. Jayakumar, A. Predojević, T. Huber, T. Kauten, G. S. Solomon, G. Weihs, “Deterministic photon pairs and coherent optical control of a single quantum dot,” Phys. Rev. Lett. 110,135505 (2013). [CrossRef] [PubMed]
  16. T. Flissikowski, A. Betke, I. A. Akimov, F. Henneberger, “Two-photon coherent control of a single quantum dot,” Phys. Rev. Lett. 92,227401 (2004). [CrossRef] [PubMed]
  17. M. Ježek, I. Straka, M. Mičuda, M. Dušek, J. Fiurášek, R. Filip, “Experimental test of the quantum non-Gaussian character of a heralded single-photon state,” Phys. Rev. Lett. 107,213602 (2011). [CrossRef]
  18. D. F. Walls, G. J. Milburn, Quantum Optics (Springer, 2008).
  19. C. Santori, D. Fattal, J. Vučković, G. S. Solomon, E. Waks, Y. Yamamoto, “Submicrosecond correlations in photoluminescence from InAs quantum dots,” Phys. Rev. B 69,205324 (2004). [CrossRef]
  20. A. Predojević, S. Grabher, G. Weihs, “Pulsed Sagnac source of polarization entangled photon pairs,” Opt. Express 20, 25022–25029 (2012). [CrossRef]
  21. O. Kuzucu, F. N. C. Wong, “Pulsed Sagnac source of narrow-band polarization entangled photons,” Opt. Express 15, 15377–15386 (2007).
  22. J. Eisert, S. Scheel, M. B. Plenio, “Distilling Gaussian states with Gaussian operations is impossible,” Phys. Rev. Lett. 89,137903 (2002). [CrossRef] [PubMed]
  23. J. Niset, J. Fiurášek, N. J. Cerf, “No-Go theorem for Gaussian quantum error correction,” Phys. Rev. Lett. 102,120501 (2009). [CrossRef] [PubMed]
  24. V. Veitch, C. Ferrie, D. Gross, J. Emerson, “Negative quasi-probability as a resource for quantum computation,” New. J. Phys 14,113011 (2012). [CrossRef]
  25. A. Mari, J. Eisert, “Negative quasi-probability as a resource for quantum computation,” Phys. Rev. Lett. 109,230503 (2012). [CrossRef]
  26. A. Dousse, J. Suffczyski, A. Beveratos, O. Krebs, A. Lematre, I. Sagnes, J. Bloch, P. Voisin, P. Senellart, “Ultrabright source of entangled photon pairs,” Nature 466, 217–220 (2010). [CrossRef] [PubMed]
  27. P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79, 135–174 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited