OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 4 — Feb. 24, 2014
  • pp: 4799–4816

Inverse diffraction grating of Maxwell’s equations in biperiodic structures

Gang Bao, Tao Cui, and Peijun Li  »View Author Affiliations

Optics Express, Vol. 22, Issue 4, pp. 4799-4816 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1727 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Consider a time-harmonic electromagnetic plane wave incident on a perfectly conducting biperiodic surface (crossed grating). The diffraction is modeled as a boundary value problem for the three-dimensional Maxwell equation. The surface is assumed to be a small and smooth deformation of a planar surface. In this paper, a novel approach is developed to solve the inverse diffraction grating problem in the near-field regime, which is to reconstruct the surface with resolution beyond Rayleigh’s criterion. The method requires only a single incident field with one polarization, one frequency, and one incident direction, and is realized by using the fast Fourier transform. Numerical results show that the method is simple, efficient, and stable to reconstruct biperiodic surfaces with subwavelength resolution.

© 2014 Optical Society of America

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(290.3200) Scattering : Inverse scattering
(180.4243) Microscopy : Near-field microscopy

ToC Category:
Diffraction and Gratings

Original Manuscript: January 3, 2014
Revised Manuscript: February 5, 2014
Manuscript Accepted: February 6, 2014
Published: February 21, 2014

Gang Bao, Tao Cui, and Peijun Li, "Inverse diffraction grating of Maxwell’s equations in biperiodic structures," Opt. Express 22, 4799-4816 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Petit, ed., Electromagnetic Theory of Gratings (Springer, 1980). [CrossRef]
  2. G. Bao, D. Dobson, J. A. Cox, “Mathematical studies in rigorous grating theory,” J. Opt. Soc. Am. A 12, 1029–1042 (1995). [CrossRef]
  3. Z. Chen, H. Wu, “An adaptive finite element method with perfectly matched absorbing layers for the wave scattering by periodic structures,” SIAM J. Numer. Anal. 41, 799–826 (2003). [CrossRef]
  4. J. C. Nédélec, F. Starling, “Integral equation methods in a quasi-periodic diffraction problem for the time-harmonic Maxwell’s equations,” SIAM J. Math. Anal. 22, 1679–1701 (1991). [CrossRef]
  5. Y. Wu, Y. Y. Lu, “Analyzing diffraction gratings by a boundary integral equation Neumann-to-Dirichlet map method,” J. Opt. Soc. Am. A 26, 2444–2451 (2009). [CrossRef]
  6. G. Bao, L. Cowsar, W. Masters, Mathematical Modeling in Optical Science, Vol. 22 of Frontiers in Applied Mathematics (SIAM, 2001). [CrossRef]
  7. G. Bao, “A unique theorem for an inverse problem in periodic diffractive optics,” Inverse Probl. 10, 335–340 (1994). [CrossRef]
  8. G. Bao, A. Friedman, “Inverse problems for scattering by periodic structure,” Arch. Rational Mech. Anal. 132, 49–72 (1995). [CrossRef]
  9. G. Bruckner, J. Cheng, M. Yamamoto, “An inverse problem in diffractive optics: conditional stability,” Inverse Probl. 18, 415–433 (2002). [CrossRef]
  10. F. Hettlich, A. Kirsch, “Schiffer’s theorem in inverse scattering theory for periodic structures,” Inverse Probl. 13, 351–361 (1997). [CrossRef]
  11. A. Kirsch, “Uniqueness theorems in inverse scattering theory for periodic structures,” Inverse Probl. 10, 145–152 (1994). [CrossRef]
  12. T. Arens, A. Kirsch, “The factorization method in inverse scattering from periodic structures,” Inverse Probl. 19, 1195–1211 (2003). [CrossRef]
  13. G. Bao, P. Li, H. Wu, “A computational inverse diffraction grating problem,” J. Opt. Soc. Am. A 29, 394–399 (2012). [CrossRef]
  14. G. Bao, P. Li, J. Lv, “Numerical solution of an inverse diffraction grating problem from phasless data,” J. Opt. Soc. Am. A 30, 293–299 (2013). [CrossRef]
  15. G. Bruckner, J. Elschner, “A two-step algorithm for the reconstruction of perfectly reflecting periodic profiles,” Inverse Probl. 19, 315–329 (2003). [CrossRef]
  16. J. Elschner, G. Hsiao, A. Rathsfeld, “Grating profile reconstruction based on finite elements and optimization techniques,” SIAM J. Appl. Math. 64, 525–545 (2003).
  17. F. Hettlich, “Iterative regularization schemes in inverse scattering by periodic structures,” Inverse Probl. 18, 701–714 (2002). [CrossRef]
  18. K. Ito, F. Reitich, “A high-order perturbation approach to profile reconstruction: I. Perfectly conducting gratings,” Inverse Probl. 15, 1067–1085 (1999). [CrossRef]
  19. A. Malcolm, D. P. Nicholls, “Operator expansions and constrained quadratic optimization for interface reconstruction: Impenetrable periodic acoustic media,” Wave Motion, to appear.
  20. D. Dobson, “Optimal design of periodic antireflective structures for the Helmholtz equation,” Eur. J. Appl. Math. 4, 321–340 (1993). [CrossRef]
  21. D. Dobson, “Optimal shape design of blazed diffraction grating,” J. Appl. Math. Optim. 40, 61–78 (1999). [CrossRef]
  22. J. Elschner, G. Schmidt, “Diffraction in periodic structures and optimal design of binary gratings: I. Direct problems and gradient formulas,” Math. Methods Appl. Sci. 21, 1297–1342 (1998). [CrossRef]
  23. J. Elschner, G. Schmidt, “Numerical solution of optimal design problems for binary gratings,” J. Comput. Phys. 146, 603–626 (1998). [CrossRef]
  24. I. Akduman, R. Kress, A. Yapar, “Iterative reconstruction of dielectric rough surface profiles at fixed frequency,” Inverse Probl. 22, 939–954 (2006). [CrossRef]
  25. R. Coifman, M. Goldberg, T. Hrycak, M. Israeli, V. Rokhlin, “An improved operator expansion algorithm for direct and inverse scattering computations,” Waves Random Media 9, 441–457 (1999). [CrossRef]
  26. J. A. DeSanto, R. J. Wombell, “The reconstruction of shallow rough-surface profiles from scattered field data,” Inverse Probl. 7, L7–L12 (1991). [CrossRef]
  27. R. Kress, T. Tran, “Inverse scattering for a locally perturbed half-plane,” Inverse Probl. 16, 1541–1559 (2000). [CrossRef]
  28. G. Bao, “Variational approximation of Maxwell’s equations in biperiodic structures,” SIAM J. Appl. Math. 57, 364–381 (1997). [CrossRef]
  29. G. Bao, P. Li, H. Wu, “An adaptive edge element method with perfectly matched absorbing layers for wave scattering by biperiodic structures,” Math. Comput. 79, 1–34 (2009). [CrossRef]
  30. D. Dobson, “A variational method for electromagnetic diffraction in biperiodic structures,” Math. Model. Numer. Anal. 28, 419–439 (1994).
  31. A. Lechleiter, D. L. Nguyen, “On uniqueness in electromagnetic scattering from biperiodic structures,” ESAIM Math. Modell. Numer. Anal. 47, 1167–1184 (2013). [CrossRef]
  32. H. Ammari, “Uniqueness theorems for an inverse problem in a doubly periodic structure,” Inverse Probl. 11, 823–833 (1995). [CrossRef]
  33. G. Bao, H. Zhang, J. Zou, “Unique determination of periodic polyhedral structures by scattered electromagnetic fields,” Trans. Am. Math. Soc. 363, 4527–4551 (2011). [CrossRef]
  34. G. Bao, Z. Zhou, “An inverse problem for scattering by a doubly periodic structure,” Trans. Am. Math. Soc. 350, 4089–4103 (1998). [CrossRef]
  35. G. Hu, J. Yang, B. Zhang, “An inverse electromagnetic scattering problem for a bi-periodic inhomogeneous layer on a perfectly conducting plate,” Appl. Anal. 90, 317–333 (2011). [CrossRef]
  36. G. Hu, B. Zhang, “The linear sampling method for inverse electromagnetic scattering by a partially coated bi-periodic structures,” Math. Methods Appl. Sci. 34, 509–519 (2011). [CrossRef]
  37. J. Yang, B. Zhang, “Inverse electromagnetic scattering problems by a doubly periodic structure,” Math. Appl. Anal. 18, 111–126 (2011).
  38. A. Lechleiter, D. L. Nguyen, “Factorization method for electromagnetic inverse scattering from biperiodic structures,” SIAM J. Imaging Sci. 6, 1111–1139 (2013). [CrossRef]
  39. D. L. Nguyen, Spectral Methods for Direct and Inverse Scattering from Periodic Structures (PhD thesis, Ecole Polytechnique, Palaiseau, France, 2012).
  40. K. Sandfort, The factorization method for inverse scattering from periodic inhomogeneous media (PhD thesis, Karlsruher Institut für Technologie, 2010).
  41. O. Bruno, F. Reitich, “Numerical solution of diffraction problems: a method of variation of boundaries,” J. Opt. Soc. Am. A 10, 1168–1175 (1993). [CrossRef]
  42. O. Bruno, F. Reitich, “Numerical solution of diffraction problems: a method of variation of boundaries. III. Doubly periodic gratings,” J. Opt. Soc. Am. A 10, 2551–2562 (1993). [CrossRef]
  43. Y. He, D. P. Nicholls, J. Shen, “An efficient and stable spectral method for electromagnetic scattering from a layered periodic struture,” J. Comput. Phys. 231, 3007–3022 (2012). [CrossRef]
  44. A. Malcolm, D. P. Nicholls, “A field expansions method for scattering by periodic multilayered media,” J. Acoust. Soc. Am. 129, 1783–1793 (2011). [CrossRef] [PubMed]
  45. A. Malcolm, D. P. Nicholls, “A boundary perturbation method for recovering interface shapes in layered media,” Inverse Probl. 27, 095009 (2011). [CrossRef]
  46. D. P. Nicholls, F. Reitich, “Shape deformations in rough surface scattering: cancellations, conditioning, and convergence,” J. Opt. Soc. Am. A 21, 590–605 (2004). [CrossRef]
  47. D. P. Nicholls, F. Reitich, “Shape deformations in rough surface scattering: improved algorithms,” J. Opt. Soc. Am. A 21, 606–621 (2004). [CrossRef]
  48. G. Bao, P. Li, “Near-field imaging of infinite rough surfaces,” SIAM J. Appl. Math. 73, 2162–2187 (2013). [CrossRef]
  49. G. Bao, P. Li, “Near-field imaging of infinite rough surfaces in dielectric media,” SIAJ J. Imaging Sci., to appear.
  50. T. Cheng, P. Li, Y. Wang, “Near-field imaging of perfectly conducting grating surfaces,” J. Opt. Soc. Am. A 30, 2473–2481 (2013). [CrossRef]
  51. G. Bao, J. Lin, “Near-field imaging of the surface displacement on an infinite ground plane,” Inverse Probl. Imag. 7, 377–396 (2013). [CrossRef]
  52. S. Carney, J. Schotland, “Inverse scattering for near-field microscopy,” App. Phys. Lett. 77, 2798–2800 (2000). [CrossRef]
  53. S. Carney, J. Schotland, “Near-field tomography,” MSRI Ser. Math. Appl. 47, 133–168 (2003).
  54. H. Ammari, J. Garnier, K. Solna, “Resolution and stability analysis in full-aperture, linearized conductivity and wave imaging,” Proc. Am. Math. Soc. 141, 3431–3446 (2013). [CrossRef]
  55. H. Ammari, J. Garnier, K. Solna, “Partial data resolving power of conductivity imaging from boundary measurements,” SIAM J. Math. Anal. 45, 1704–1722 (2013). [CrossRef]
  56. PHG (Parallel Hierarchical Grid), http://lsec.cc.ac.cn/phg/ .
  57. P. R. Amestoy, I. S. Duff, J. Koster, J.-Y. L’Excellent, “A fully asynchronous multifrontal solver using distributed dynamic scheduling,” SIAM J. Matrix Anal. Appl. 23, 15–41 (2001). [CrossRef]
  58. P. R. Amestoy, A. Guermouche, J.-Y. L’Excellent, S. Pralet, “Hybrid scheduling for the parallel solution of linear systems,” Parallel Comput. 32, 136–156 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited