OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 4 — Feb. 24, 2014
  • pp: 4817–4829

Nonlocal optical properties in periodic lattice of graphene layers

Ruey-Lin Chern and Dezhuan Han  »View Author Affiliations

Optics Express, Vol. 22, Issue 4, pp. 4817-4829 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (4603 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Based on the effective medium model, nonlocal optical properties in periodic lattice of graphene layers with the period much less than the wavelength are investigated. Strong nonlocal effects are found in a broad frequency range for TM polarization, where the effective permittivity tensor exhibits the Lorentzian resonance. The resonance frequency varies with the wave vector and coincides well with the polaritonic mode. Nonlocal features are manifest on the emergence of additional wave and the occurrence of negative refraction. By examining the characters of the eigenmode, the nonlocal optical properties are attributed to the excitation of plasmons on the graphene surfaces.

© 2014 Optical Society of America

OCIS Codes
(230.4170) Optical devices : Multilayers
(240.6680) Optics at surfaces : Surface plasmons
(260.2065) Physical optics : Effective medium theory

ToC Category:
Imaging Systems

Original Manuscript: January 6, 2014
Revised Manuscript: February 15, 2014
Manuscript Accepted: February 18, 2014
Published: February 21, 2014

Ruey-Lin Chern and Dezhuan Han, "Nonlocal optical properties in periodic lattice of graphene layers," Opt. Express 22, 4817-4829 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, “Electric Field Effect in Atomically Thin Carbon Films,” Science 306, 666–669 (2004). [CrossRef] [PubMed]
  2. K. Novoselov, A. K. Geim, S. Morozov, D. Jiang, M. K. I. Grigorieva, S. Dubonos, A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438, 197–200 (2005). [CrossRef] [PubMed]
  3. Y. Zhang, Y.-W. Tan, H. L. Stormer, P. Kim, “Experimental observation of the quantum Hall effect and Berry’s phase in graphene,” Nature 438, 201–204 (2005). [CrossRef] [PubMed]
  4. K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, H. L. Stormer, “Ultrahigh electron mobility in suspended graphene,” Solid State Commun. 146, 351–355 (2008). [CrossRef]
  5. A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C. N. Lau, “Superior thermal conductivity of single-layer graphene,” Nano Lett. 8, 902–907 (2008). [CrossRef] [PubMed]
  6. K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature 457, 706–710 (2009). [CrossRef] [PubMed]
  7. F. Xia, T. Mueller, Y.-m. Lin, A. Valdes-Garcia, P. Avouris, “Ultrafast graphene photodetector,” Nat. Nanotechnol. 4, 839–843 (2009). [CrossRef] [PubMed]
  8. Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4, 803–810 (2010). [CrossRef] [PubMed]
  9. M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, X. Zhang, “A graphene-based broadband optical modulator,” Nature 474, 64–67 (2011). [CrossRef] [PubMed]
  10. P.-Y. Chen, A. Alù, “Atomically thin surface cloak using graphene mnolayers,” ACS Nano 5, 5855–5863 (2011). [CrossRef] [PubMed]
  11. A. Vakil, N. Engheta, “Transformation optics using graphene,” Science 332, 1291–1294 (2011). [CrossRef] [PubMed]
  12. R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320, 1308 (2008). [CrossRef] [PubMed]
  13. K. F. Mak, M. Y. Sfeir, Y. Wu, C. H. Lui, J. A. Misewich, T. F. Heinz, “Measurement of the optical conductivity of graphene,” Phys. Rev. Lett. 101, 196405 (2008). [CrossRef] [PubMed]
  14. A. B. Kuzmenko, E. van Heumen, F. Carbone, D. van der Marel, “Universal optical conductance of graphite,” Phys. Rev. Lett. 100, 117401 (2008). [CrossRef] [PubMed]
  15. T. Stauber, N. M. R. Peres, A. K. Geim, “Optical conductivity of graphene in the visible region of the spectrum,” Phys. Rev. B 78, 085432 (2008). [CrossRef]
  16. Z. Li, E. A. Henriksen, Z. Jiang, Z. Hao, M. C. Martin, P. Kim, H. Stormer, D. N. Basov, “Dirac charge dynamics in graphene by infrared spectroscopy,” Nat. Phys. 4, 532–535 (2008). [CrossRef]
  17. F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, Y. R. Shen, “Gate-variable optical transitions in graphene,” Science 320, 206–209 (2008). [CrossRef] [PubMed]
  18. Y. Liu, R. F. Willis, K. V. Emtsev, T. Seyller, “Plasmon dispersion and damping in electrically isolated two-dimensional charge sheets,” Phys. Rev. B 78, 201403 (2008). [CrossRef]
  19. M. Jablan, H. Buljan, M. Soljačić, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B 80, 245435 (2009). [CrossRef]
  20. L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6, 630–634 (2011). [CrossRef] [PubMed]
  21. A. Y. Nikitin, F. Guinea, F. J. García-Vidal, L. Martín-Moreno, “Edge and waveguide terahertz surface plasmon modes in graphene microribbons,” Phys. Rev. B 84, 161407 (2011). [CrossRef]
  22. T. Stauber, G. Gómez-Santos, “Plasmons and near-field amplification in double-layer graphene,” Phys. Rev. B 85, 075410 (2012). [CrossRef]
  23. F. H. L. Koppens, D. E. Chang, F. J. García de Abajo, “Graphene plasmonics: a platform for strong light-matter interactions,” Nano Lett. 11, 3370–3377 (2011). [CrossRef] [PubMed]
  24. L. A. Falkovsky, S. S. Pershoguba, “Optical far-infrared properties of a graphene monolayer and multilayer,” Phys. Rev. B 76, 153410 (2007). [CrossRef]
  25. R. E. V. Profumo, M. Polini, R. Asgari, R. Fazio, A. H. MacDonald, “Electron-electron interactions in decoupled graphene layers,” Phys. Rev. B 82, 085443 (2010). [CrossRef]
  26. T. Zhan, X. Shi, Y. Dai, X. Liu, J. Zi, “Transfer matrix method for optics in graphene layers,” J. Phys.: Condens. Matter 25, 215301 (2013).
  27. V. L. Ginzburg, A. A. Rukhadze, V. P. Silin, “The electrodynamics of crystals and the theory of excitons,” J. Phys. Chem. Solids 23, 85–97 (1962). [CrossRef]
  28. R. M. Hornreich, S. Shtrikman, “Theory of gyrotropic birefringence,” Phys. Rev. 171, 1065–1074 (1968). [CrossRef]
  29. P. A. Belov, R. Marques, S. I. Maslovski, I. S. Nefedov, M. Silveirinha, C. R. Simovski, S. A. Tretyakov, “Strong spatial dispersion in wire media in the very large wavelength limit,” Phys. Rev. B 67, 113103 (2003). [CrossRef]
  30. C. R. Simovski, P. A. Belov, “Low-frequency spatial dispersion in wire media,” Phys. Rev. E 70, 046616 (2004). [CrossRef]
  31. A. V. Chebykin, A. A. Orlov, C. R. Simovski, Y. S. Kivshar, P. A. Belov, “Nonlocal effective parameters of multilayered metal-dielectric metamaterials,” Phys. Rev. B 86, 115420 (2012). [CrossRef]
  32. R.-L. Chern, “Spatial dispersion and nonlocal effective permittivity for periodic layered metamaterials,” Opt. Express 21, 16514–16527 (2013). [CrossRef] [PubMed]
  33. J. Elser, V. A. Podolskiy, I. Salakhutdinov, I. Avrutsky, “Nonlocal effects in effective-medium response of nanolayered metamaterials,” Appl. Phys. Lett. 90, 191109 (2007). [CrossRef]
  34. B. Wunsch, T. Stauber, F. Sols, F. Guinea, “Dynamical polarization of graphene at finite doping,” New J. Phys. 8, 318 (2006). [CrossRef]
  35. V. P. Gusynin, S. G. Sharapov, J. P. Carbotte, “Unusual Microwave Response of Dirac Quasiparticles in Graphene,” Phys. Rev. Lett. 96, 256802 (2006). [CrossRef] [PubMed]
  36. E. H. Hwang, S. Das Sarma, “Dielectric function, screening, and plasmons in two-dimensional graphene,” Phys. Rev. B 75, 205418 (2007). [CrossRef]
  37. L. A. Falkovsky, A. A. Varlamov, “Space-time dispersion of graphene conductivity,” Eur. Phys. J. B 56, 281–284 (2007). [CrossRef]
  38. S. A. Mikhailov, K. Ziegler, “New electromagnetic mode in graphene,” Phys. Rev. Lett. 99, 016803 (2007). [CrossRef] [PubMed]
  39. L. D. Landau, E. M. Lifshitz, L. P. Pitaevski, Electrodynamics of Continuous Media, 2 (Butterworth-Heinenan, 1984).
  40. V. M. Agranovich, V. L. Ginzburg, Crystal Optics with Spatial Dispersion, and Excitons (Springer-Verlag, 1984). [CrossRef]
  41. G. D. Mahan, G. Obermair, “Polaritons at surfaces,” Phys. Rev. 183, 834–841 (1969). [CrossRef]
  42. L. D. Landau, E. M. Lifshitz, Quantum Mechanics: Non-relativistic Theory, 3 (Butterworth-Heinenan, 1977).
  43. X. Xu, Y. Xi, D. Han, X. Liu, J. Zi, Z. Zhu, “Effective plasma frequency in one-dimensional metallic-dielectric photonic crystals,” Appl. Phys.Lett. 86, 091112 (2005).
  44. J. J. Hopfield, D. G. Thomas, “Theoretical and experimental effects of spatial dispersion on the optical properties of crystals,” Phys. Rev. 132, 563–572 (1963). [CrossRef]
  45. S. I. Pekar, “Theory of electromagnetic waves in a crystal with excitons,” J. Phys. Chem. Solids 5, 11–22 (1958). [CrossRef]
  46. V. M. Agranovich, Y. N. Gartstein, “Spatial dispersion and negative refraction of light,” Phys. Usp. 49, 1029 (2006). [CrossRef]
  47. M. F. Bishop, A. A. Maradudin, “Energy flow in a semi-infinite spatially dispersive absorbing dielectric,” Phys. Rev. B 14, 3384–3393 (1976). [CrossRef]
  48. S. Foteinopoulou, E. N. Economou, C. M. Soukoulis, “Refraction in Media with a Negative Refractive Index,” Phys. Rev. Lett. 90, 107402 (2003). [CrossRef] [PubMed]
  49. P. A. Belov, “Backward waves and negative refraction in uniaxial dielectrics with negative dielectric permittivity along the anisotropy axis,” Microw. Opt. Technol. Lett. 37, 259–263 (2003). [CrossRef]
  50. B. Wang, X. Zhang, F. J. García-Vidal, X. Yuan, J. Teng, “Strong coupling of surface plasmon polaritons in monolayer graphene sheet arrays,” Phys. Rev. Lett. 109, 073901 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited