OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 4 — Feb. 24, 2014
  • pp: 4830–4848

Noise statistics of phase-resolved optical coherence tomography imaging: single-and dual-beam-scan Doppler optical coherence tomography

Shuichi Makita, Franck Jaillon, Israt Jahan, and Yoshiaki Yasuno  »View Author Affiliations

Optics Express, Vol. 22, Issue 4, pp. 4830-4848 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (2056 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Noise statistics of phase-resolved optical coherence tomography (OCT) imaging are complicated and involve noises of OCT, correlation of signals, and speckles. In this paper, the statistical properties of phase shift between two OCT signals that contain additive random noises and speckle noises are presented. Experimental results obtained with a scattering tissue phantom are in good agreement with theoretical predictions. The performances of the dual-beam method and conventional single-beam method are compared. As expected, phase shift noise in the case of the dual-beam-scan method is less than that for the single-beam method when the transversal sampling step is large.

© 2014 Optical Society of America

OCIS Codes
(110.4500) Imaging systems : Optical coherence tomography
(120.5050) Instrumentation, measurement, and metrology : Phase measurement
(170.3340) Medical optics and biotechnology : Laser Doppler velocimetry
(170.3880) Medical optics and biotechnology : Medical and biological imaging

ToC Category:
Fourier Optics and Signal Processing

Original Manuscript: January 10, 2014
Manuscript Accepted: February 10, 2014
Published: February 21, 2014

Virtual Issues
Vol. 9, Iss. 4 Virtual Journal for Biomedical Optics

Shuichi Makita, Franck Jaillon, Israt Jahan, and Yoshiaki Yasuno, "Noise statistics of phase-resolved optical coherence tomography imaging: single-and dual-beam-scan Doppler optical coherence tomography," Opt. Express 22, 4830-4848 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Y. Zhao, Z. Chen, C. Saxer, S. Xiang, J. F. d. Boer, J. S. Nelson, “Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity,” Opt. Lett. 25, 114–116 (2000). [CrossRef]
  2. B. R. White, M. C. Pierce, N. Nassif, B. Cense, B. H. Park, G. J. Tearney, B. E. Bouma, T. C. Chen, J. F. d. Boer, “In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical Doppler tomography,” Opt. Express 11, 3490–3497 (2003). [CrossRef] [PubMed]
  3. R. Leitgeb, L. Schmetterer, W. Drexler, A. Fercher, R. Zawadzki, T. Bajraszewski, “Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier domain optical coherence tomography,” Opt. Express 11, 3116–3121 (2003). [CrossRef] [PubMed]
  4. S. Makita, Y. Hong, M. Yamanari, T. Yatagai, Y. Yasuno, “Optical coherence angiography,” Opt. Express 14, 7821–7840 (2006). [CrossRef] [PubMed]
  5. B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med. 15, 1219–1223 (2009). [CrossRef] [PubMed]
  6. D. Y. Kim, J. Fingler, J. S. Werner, D. M. Schwartz, S. E. Fraser, R. J. Zawadzki, “In vivo volumetric imaging of human retinal circulation with phase-variance optical coherence tomography,” Biomed. Opt. Express 2, 1504–1513 (2011). [CrossRef] [PubMed]
  7. B. Braaf, K. A. Vermeer, V. A. D. Sicam, E. van Zeeburg, J. C. van Meurs, J. F. de Boer, “Phase-stabilized optical frequency domain imaging at 1-m for the measurement of blood flow in the human choroid,” Opt. Express 19, 20886–20903 (2011). [CrossRef] [PubMed]
  8. R. K. Wang, S. Kirkpatrick, M. Hinds, “Phase-sensitive optical coherence elastography for mapping tissue microstrains in real time,” Appl. Phys. Lett. 90, 164105, 2007). [CrossRef]
  9. S. G. Adie, X. Liang, B. F. Kennedy, R. John, D. D. Sampson, S. A. Boppart, “Spectroscopic optical coherence elastography,” Opt. Express 18, 25519–25534 (2010). [CrossRef] [PubMed]
  10. B. F. Kennedy, S. H. Koh, R. A. McLaughlin, K. M. Kennedy, P. R. T. Munro, D. D. Sampson, “Strain estimation in phase-sensitive optical coherence elastography,” Biomed. Opt. Express 3, 1865–1879 (2012). [CrossRef] [PubMed]
  11. T. Akkin, D. P. Dav, J.-I. Youn, S. A. Telenkov, H. G. R., T. E. Milner, “Imaging tissue response to electrical and photothermal stimulation with nanometer sensitivity,” Lasers Surg. Med. 33, 219–225 (2003). [CrossRef] [PubMed]
  12. S. A. Telenkov, D. P. Dave, S. Sethuraman, T. Akkin, T. E. Milner, “Differential phase optical coherence probe for depth-resolved detection of photothermal response in tissue,” Phys. Med. Biol. 49, 111–119 (2004). [CrossRef] [PubMed]
  13. D. C. Adler, S.-W. Huang, R. Huber, J. G. Fujimoto, “Photothermal detection of gold nanoparticles using phase-sensitive optical coherence tomography,” Opt. Express 16, 4376–4393 (2008). [CrossRef] [PubMed]
  14. H. H. Mller, L. Ptaszynski, K. Schlott, C. Debbeler, M. Bever, S. Koinzer, R. Birngruber, R. Brinkmann, G. Httmann, “Imaging thermal expansion and retinal tissue changes during photocoagulation by high speed OCT,” Biomed. Opt. Express 3, 1025–1046 (2012). [CrossRef]
  15. W. Drexler, J. G. Fujimoto, Optical Coherence Tomography: Technology and Applications (Springer, 2008). [CrossRef]
  16. S. Yazdanfar, C. Yang, M. Sarunic, J. Izatt, “Frequency estimation precision in Doppler optical coherence tomography using the Cramer-Rao lower bound,” Opt. Express 13, 410–416 (2005). [CrossRef] [PubMed]
  17. B. H. Park, M. C. Pierce, B. Cense, S.-H. Yun, M. Mujat, G. J. Tearney, B. E. Bouma, J. F. d. Boer, “Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 1.3 μm,” Opt. Express 13, 3931–3944 (2005). [CrossRef] [PubMed]
  18. B. J. Vakoc, G. J. Tearney, B. E. Bouma, “Statistical properties of phase-decorrelation in phase-resolved Doppler optical coherence tomography,” IEEE Trans. Med. Imaging 28, 814–821 (2009). [CrossRef] [PubMed]
  19. S. Makita, F. Jaillon, M. Yamanari, M. Miura, Y. Yasuno, “Comprehensive in vivo micro-vascular imaging of the human eye by dual-beam-scan Doppler optical coherence angiography,” Opt. Express 19, 1271–1283 (2011). [CrossRef] [PubMed]
  20. S. Zotter, M. Pircher, T. Torzicky, M. Bonesi, E. Gtzinger, R. A. Leitgeb, C. K. Hitzenberger, “Visualization of microvasculature by dual-beam phase-resolved Doppler optical coherence tomography,” Opt. Express 19, 1217–1227 (2011). [CrossRef] [PubMed]
  21. F. Jaillon, S. Makita, E.-J. Min, B. H. Lee, Y. Yasuno, “Enhanced imaging of choroidal vasculature by high-penetration and dual-velocity optical coherence angiography,” Biomed. Opt. Express 2, 1147–1158 (2011). [CrossRef] [PubMed]
  22. L. Jong-Sen, K. Hoppel, S. Mango, A. Miller, “Intensity and phase statistics of multilook polarimetric and interferometric SAR imagery,” IEEE Trans. Geosci. Remote Sens. 32, 1017–1028 (1994). [CrossRef]
  23. R. J. A. Tough, D. Blacknell, S. Quegan, “A statistical description of polarimetric and interferometric synthetic aperture radar data,” Proc. R. Soc. Lond. A 449, 567–589 (1995). [CrossRef]
  24. J. Walther, E. Koch, “Transverse motion as a source of noise and reduced correlation of the Doppler phase shift in spectral domain OCT,” Opt. Express 17, 19698–19713 (2009). [CrossRef] [PubMed]
  25. V. J. Srinivasan, S. Sakadi, I. Gorczynska, S. Ruvinskaya, W. Wu, J. G. Fujimoto, D. A. Boas, “Quantitative cerebral blood flow with optical coherence tomography,” Opt. Express 18, 2477–2494 (2010). [CrossRef] [PubMed]
  26. J. Lee, W. Wu, J. Y. Jiang, B. Zhu, D. A. Boas, “Dynamic light scattering optical coherence tomography,” Opt. Express 20, 22262–22277 (2012). [CrossRef] [PubMed]
  27. A. Szkulmowska, M. Szkulmowski, A. Kowalczyk, M. Wojtkowski, “Phase-resolved Doppler optical coherence tomographylimitations and improvements,” Opt. Lett. 33, 1425–1427 (2008). [CrossRef] [PubMed]
  28. V. X. Yang, M. L. Gordon, A. Mok, Y. Zhao, Z. Chen, R. S. Cobbold, B. C. Wilson, I. A. Vitkin, “Improved phase-resolved optical Doppler tomography using Kasai velocity estimator and histogram segmentation,” Opt. Commun. 208, 209–214 (2002). [CrossRef]
  29. A. Moreira, “Improved multilook techniques applied to SAR and SCANSAR imagery,” IEEE Trans. Geosci. Remote Sens. 29, 529–534, 1991). [CrossRef]
  30. J. S. Bendat, A. G. Piersol, Random Data: Analysis and Measurement Procedures (John Wiley and Sons, 2010). [CrossRef]
  31. F. Jaillon, S. Makita, Y. Yasuno, “Variable velocity range imaging of the choroid with dual-beam optical coherence angiography,” Opt. Express 20, 385–396 (2012). [CrossRef] [PubMed]
  32. S. Makita, F. Jaillon, M. Yamanari, Y. Yasuno, “Dual-beam-scan Doppler optical coherence angiography for birefringence-artifact-free vasculature imaging,” Opt. Express 20, 2681–2692 (2012). [CrossRef] [PubMed]
  33. K. Kurokawa, K. Sasaki, S. Makita, Y.-J. Hong, Y. Yasuno, “Three-dimensional retinal and choroidal capillary imaging by power Doppler optical coherence angiography with adaptive optics,” Opt. Express 20, 22796–22812 (2012). [CrossRef] [PubMed]
  34. S. H. Yun, G. J. Tearney, J. F. d. Boer, B. E. Bouma, “Motion artifacts in optical coherence tomography with frequency-domain ranging,” Opt. Express 12, 2977–2998 (2004). [CrossRef] [PubMed]
  35. I. Grulkowski, I. Gorczynska, M. Szkulmowski, D. Szlag, A. Szkulmowska, R. A. Leitgeb, A. Kowalczyk, M. Wojtkowski, “Scanning protocols dedicated to smart velocity ranging in spectral OCT,” Opt. Express 17, 23736–23754 (2009). [CrossRef]
  36. L. An, J. Qin, R. K. Wang, “Ultrahigh sensitive optical microangiography for in vivo imaging of microcirculations within human skin tissue beds,” Opt. Express 18, 8220–8228 (2010). [CrossRef] [PubMed]
  37. B. Braaf, K. A. Vermeer, K. V. Vienola, J. F. de Boer, “Angiography of the retina and the choroid with phase-resolved OCT using interval-optimized backstitched b-scans,” Opt. Express 20, 20516–20534 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited