OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 5 — Mar. 10, 2014
  • pp: 4867–4879

Amplitude-phase coupling and chirp in quantum-dot lasers: influence of charge carrier scattering dynamics

Benjamin Lingnau, Weng W. Chow, and Kathy Lüdge  »View Author Affiliations


Optics Express, Vol. 22, Issue 5, pp. 4867-4879 (2014)
http://dx.doi.org/10.1364/OE.22.004867


View Full Text Article

Enhanced HTML    Acrobat PDF (1599 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We investigate the dependence of the amplitude-phase coupling in quantum-dot (QD) lasers on the charge-carrier scattering timescales. The carrier scattering processes influence the relaxation oscillation parameters, as well as the frequency chirp, which are both important parameters when determining the modulation performance of the laser device and its reaction to optical perturbations. We find that the FM/AM response exhibits a strong dependence on the modulation frequency, which leads to a modified optical response of QD lasers when compared to conventional laser devices. Furthermore, the frequency response curve changes with the scattering time scales, which can allow for an optimization of the laser stability towards optical perturbations.

© 2014 Optical Society of America

OCIS Codes
(140.5960) Lasers and laser optics : Semiconductor lasers
(230.5590) Optical devices : Quantum-well, -wire and -dot devices
(270.3100) Quantum optics : Instabilities and chaos

ToC Category:
Nonlinear Optics

History
Original Manuscript: January 8, 2014
Revised Manuscript: February 12, 2014
Manuscript Accepted: February 13, 2014
Published: February 24, 2014

Virtual Issues
Physics and Applications of Laser Dynamics (2014) Optics Express

Citation
Benjamin Lingnau, Weng W. Chow, and Kathy Lüdge, "Amplitude-phase coupling and chirp in quantum-dot lasers: influence of charge carrier scattering dynamics," Opt. Express 22, 4867-4879 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-5-4867


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. W. Chow, F. Jahnke, “On the physics of semiconductor quantum dots for applications in lasers and quantum optics,” Prog. Quantum Electron. 37, 109–184 (2013). [CrossRef]
  2. G. H. M. van Tartwijk, D. Lenstra, “Semiconductor laser with optical injection and feedback,” Quantum Semi-class. Opt. 7, 87–143 (1995). [CrossRef]
  3. T. B. Simpson, J. M. Liu, K. F. Huang, K. Tai, “Nonlinear dynamics induced by external optical injection in semiconductor lasers,” Quantum Semiclass. Opt. 9, 765–784 (1997). [CrossRef]
  4. S. Wieczorek, B. Krauskopf, T. Simpson, D. Lenstra, “The dynamical complexity of optically injected semiconductor lasers,” Phys. Rep. 416, 1–128 (2005). [CrossRef]
  5. N. A. Naderi, M. Pochet, F. Grillot, N. B. Terry, V. Kovanis, L. F. Lester, “Modeling the injection-locked behavior of a quantum dash semiconductor laser,” IEEE J. Sel. Top. Quantum Electron. 15, 563–571 (2009). [CrossRef]
  6. B. Kelleher, D. Goulding, S. P. Hegarty, G. Huyet, D. Y. Cong, A. Martinez, A. Lemaitre, A. Ramdane, M. Fischer, F. Gerschütz, J. Koeth, “Excitable phase slips in an injection-locked single-mode quantum-dot laser,” Opt. Lett. 34, 440–442 (2009). [CrossRef] [PubMed]
  7. J. Pausch, C. Otto, E. Tylaite, N. Majer, E. Schöll, K. Lüdge, “Optically injected quantum dot lasers - impact of nonlinear carrier lifetimes on frequency locking dynamics,” New J. Phys. 14, 053018 (2012). [CrossRef]
  8. D. Ziemann, R. Aust, B. Lingnau, E. Schöll, K. Lüdge, “Optical injection enables coherence resonance in quantum-dot lasers,” Europhys. Lett. 103, 14002 (2013). [CrossRef]
  9. B. Lingnau, K. Lüdge, W. W. Chow, E. Schöll, “Failure of the α-factor in describing dynamical instabilities and chaos in quantum-dot lasers,” Phys. Rev. E 86, 065201 (2012). [CrossRef]
  10. B. Lingnau, W. W. Chow, E. Schöll, K. Lüdge, “Feedback and injection locking instabilities in quantum-dot lasers: a microscopically based bifurcation analysis,” New J. Phys. 15, 093031 (2013). [CrossRef]
  11. R. Lang, K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE J. Quantum Electron. 16, 347–355 (1980). [CrossRef]
  12. C. Masoller, M. S. Torre, “Influence of optical feedback on the polarization switching of vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 41, 483–489 (2005). [CrossRef]
  13. S. Azouigui, B. Dagens, F. Lelarge, J. G. Provost, A. Accard, F. Grillot, A. Martinez, Q. Zou, A. Ramdane, “Tolerance to optical feedback of 10-gb/s quantum-dash-based lasers emitting at 1.51μ m,” IEEE Photon. Technol. Lett. 19, 1181–1183 (2007). [CrossRef]
  14. H. Erzgräber, B. Krauskopf, D. Lenstra, “Bifurcation analysis of a semiconductor laser with filtered optical feedback,” SIAM J. Appl. Dyn. Syst. 6, 1–28 (2007). [CrossRef]
  15. M. Gioannini, G. A. P. The, I. Montrosset, “Multi-population rate equation simulation of quantum dot semiconductor lasers with feedback,” “Numerical Simulation of Optoelectronic Devices, 2008. NUSOD ’08. International Conference on,” (2008), pp. 101–102.
  16. C. Otto, K. Lüdge, E. Schöll, “Modeling quantum dot lasers with optical feedback: sensitivity of bifurcation scenarios,” phys. stat. sol. (b) 247, 829–845 (2010).
  17. F. Albert, C. Hopfmann, S. Reitzenstein, C. Schneider, S. Höfling, L. Worschech, M. Kamp, W. Kinzel, A. Forchel, I. Kanter, “Observing chaos for quantum-dot microlasers with external feedback,” Nature Communications 2, 366 (2011). [CrossRef] [PubMed]
  18. S. Osborne, P. Heinricht, N. Brandonisio, A. Amann, S. O’Brien, “Wavelength switching dynamics of twocolour semiconductor lasers with optical injection and feedback,” Semicond. Sci. Technol. 27, 094001 (2012). [CrossRef]
  19. C. Otto, B. Globisch, K. Lüdge, E. Schöll, T. Erneux, “Complex dynamics of semiconductor quantum dot lasers subject to delayed optical feedback,” Int. J. Bif. Chaos 22, 1250246 (2012). [CrossRef]
  20. B. Globisch, C. Otto, E. Schöll, K. Lüdge, “Influence of carrier lifetimes on the dynamical behavior of quantum-dot lasers subject to optical feedback,” Phys. Rev. E 86, 046201 (2012). [CrossRef]
  21. B. Dagens, A. Markus, J. Chen, J. G. Provost, D. Make, O. Le Gouezigou, J. Landreau, A. Fiore, B. Thedrez, “Giant linewidth enhancement factor and purely frequency modulated emission from quantum dot laser,” Electron. Lett. 41, 323–324 (2005). [CrossRef]
  22. H. Su, L. F. Lester, “Dynamic properties of quantum dot distributed feedback lasers: high speed, linewidth and chirp,” J. Phys. D: Appl. Phys. 38, 2112–2118 (2005). [CrossRef]
  23. K. Lüdge, R. Aust, G. Fiol, M. Stubenrauch, D. Arsenijević, D. Bimberg, E. Schöll, “Large signal response of semiconductor quantum-dot lasers,” IEEE J. Quantum Electron. 46, 1755–1762 (2010). [CrossRef]
  24. L. V. Asryan, Y. Wu, R. A. Suris, “Carrier capture delay and modulation bandwidth in an edge-emitting quantum dot laser,” Appl. Phys. Lett. 98, 131108 (2011). [CrossRef]
  25. B. Lingnau, K. Lüdge, W. W. Chow, E. Schöll, “Influencing modulation properties of quantum-dot semiconductor lasers by electron lifetime engineering,” Appl. Phys. Lett. 101, 131107 (2012). [CrossRef]
  26. C. Wang, F. Grillot, J. Even, “Impacts of wetting layer and excited state on the modulation response of quantum-dot lasers,” IEEE J. Quantum Electron. 48, 1144–1150 (2012). [CrossRef]
  27. D. Gready, G. Eisenstein, M. Gioannini, I. Montrosset, D. Arsenijević, H. Schmeckebier, M. Stubenrauch, D. Bimberg, “On the relationship between small and large signal modulation capabilities in highly nonlinear quantum dot lasers,” Appl. Phys. Lett. 102, 101107 (2013). [CrossRef]
  28. T. C. Newell, D. J. Bossert, A. Stintz, B. Fuchs, K. J. Malloy, L. F. Lester, “Gain and linewidth enhancement factor in InAs quantum-dot laser diodes,” IEEE Photonics Technol. Lett. 11, 1527–1529 (1999). [CrossRef]
  29. F. Grillot, B. Dagens, J. G. Provost, H. Su, L. F. Lester, “Gain compression and above-threshold linewidth enhancement factor in1.3μm InAs/GaAs quantum-dot lasers,” IEEE J. Quantum Electron. 44, 946–951 (2008). [CrossRef]
  30. S. Melnik, G. Huyet, A. V. Uskov, “The linewidth enhancement factor α of quantum dot semiconductor lasers,” Opt. Express 14, 2950–2955 (2006). [CrossRef] [PubMed]
  31. M. Gioannini, I. Montrosset, “Numerical analysis of the frequency chirp in quantum-dot semiconductor lasers,” IEEE J. Quantum Electron. 43, 941–949 (2007). [CrossRef]
  32. E. J. Doedel, H. B. Keller, J. P. Kervenez, “Numerical analysis and control of bifurcation problems. (I) Bifurcation in finite dimensions,” Int. J. Bif. Chaos 1, 493–520 (1991). [CrossRef]
  33. J. Kim, C. Meuer, D. Bimberg, G. Eisenstein, “Numerical simulation of temporal and spectral variation of gain and phase recovery in quantum-dot semiconductor optical amplifiers,” IEEE J. Quantum Electron. 46, 405–413 (2010). [CrossRef]
  34. N. Majer, S. Dommers-Völkel, J. Gomis-Bresco, U. Woggon, K. Lüdge, E. Schöll, “Impact of carrier-carrier scattering and carrier heating on pulse train dynamics of quantum dot semiconductor optical amplifiers,” Appl. Phys. Lett. 99, 131102 (2011). [CrossRef]
  35. K. Lüdge, “Modeling quantum dot based laser devices,” in Nonlinear Laser Dynamics - From Quantum Dots to Cryptography, K. Lüdge, ed. (WILEY-VCH Weinheim, Weinheim, 2012), chap. 1, pp. 3–34.
  36. K. Lüdge, E. Schöll, E. A. Viktorov, T. Erneux, “Analytic approach to modulation properties of quantum dot lasers,” J. Appl. Phys. 109, 103112 (2011). [CrossRef]
  37. K. Lüdge, B. Lingnau, C. Otto, E. Schöll, “Understanding electrical and optical modulation properties of semiconductor quantum-dot lasers in terms of their turn-on dynamics,” Nonlinear Phenom. Complex Syst. 15, 350–359 (2012).
  38. B. Kelleher, C. Bonatto, G. Huyet, S. P. Hegarty, “Excitability in optically injected semiconductor lasers: Contrasting quantum-well- and quantum-dot-based devices,” Phys. Rev. E 83, 026207 (2011). [CrossRef]
  39. E. J. Doedel, B. E. Oldeman, Auto-07P: Continuation and bifurcation software for ordinary differential equations, Concordia University, Montreal, Canada (2009).
  40. K. Lüdge, E. Schöll, “Temperature dependent two-state lasing in quantum dot lasers,” “Laser Dynamics and Nonlinear Photonics, Fifth Rio De La Plata Workshop 6–9 Dec. 2011,” (IEEE Publishing Services, New York, 2012), IEEE Conf. Proc., pp. 1–6.
  41. B. Lingnau, K. Lüdge, W. W. Chow, E. Schöll, “Many-body effects and self-contained phase dynamics in an optically injected quantum-dot laser,” in Semiconductor Lasers and Laser Dynamics V, Brussels, vol. 8432 of Proceedings of SPIE, K. Panajotov, M. Sciamanna, A. A. Valle, R. Michalzik, eds. (SPIE, 2012), pp. 84321J [CrossRef]
  42. C. Harder, K. Vahala, A. Yariv, “Measurement of the linewidth enhancement factor alpha of semiconductor lasers,” Appl. Phys. Lett. 42, 328–330 (1983). [CrossRef]
  43. M. Osinski, J. Buus, “Linewidth broadening factor in semiconductor lasers – an overview,” IEEE J. Quantum Electron. 23, 9–29 (1987). [CrossRef]
  44. T. Fordell, A. M. Lindberg, “Experiments on the linewidth-enhancement factor of a vertical-cavity surface-emitting laser,” IEEE J. Quantum Electron. 43, 6–15 (2007). [CrossRef]
  45. F. Grillot, C. Wang, N. Naderi, J. Even, “Modulation properties of self-injected quantum dot semiconductor diode lasers,” IEEE J. Quantum Electron. 19, 1900812 (2013). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited