OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 5 — Mar. 10, 2014
  • pp: 4896–4907

Fiber-distributed Ultra-wideband noise radar with steerable power spectrum and colorless base station

Jianyu Zheng, Hui Wang, Jianbin Fu, Li Wei, Shilong Pan, Lixian Wang, Jianguo Liu, and Ninghua Zhu  »View Author Affiliations


Optics Express, Vol. 22, Issue 5, pp. 4896-4907 (2014)
http://dx.doi.org/10.1364/OE.22.004896


View Full Text Article

Enhanced HTML    Acrobat PDF (4115 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A fiber-distributed Ultra-wideband (UWB) noise radar was achieved, which consists of a chaotic UWB noise source based on optoelectronic oscillator (OEO), a fiber-distributed transmission link, a colorless base station (BS), and a cross-correlation processing module. Due to a polarization modulation based microwave photonic filter and an electrical UWB pass-band filter embedded in the feedback loop of the OEO, the power spectrum of chaotic UWB signal could be shaped and notch-filtered to avoid the spectrum-overlay-induced interference to the narrow band signals. Meanwhile, the wavelength-reusing could be implemented in the BS by means of the distributed polarization modulation-to-intensity modulation conversion. The experimental comparison for range finding was carried out as the chaotic UWB signal was notch-filtered at 5.2 GHz and 7.8 GHz or not. Measured results indicate that space resolution with cm-level could be realized after 3-km fiber transmission thanks to the excellent self-correlation property of the UWB noise signal provided by the OEO. The performance deterioration of the radar raised by the energy loss of the notch-filtered noise signal was negligible.

© 2014 Optical Society of America

OCIS Codes
(190.3100) Nonlinear optics : Instabilities and chaos
(280.5600) Remote sensing and sensors : Radar
(350.4010) Other areas of optics : Microwaves
(060.5625) Fiber optics and optical communications : Radio frequency photonics

ToC Category:
Optical Communications

History
Original Manuscript: October 17, 2013
Revised Manuscript: January 25, 2014
Manuscript Accepted: January 30, 2014
Published: February 24, 2014

Citation
Jianyu Zheng, Hui Wang, Jianbin Fu, Li Wei, Shilong Pan, Lixian Wang, Jianguo Liu, and Ninghua Zhu, "Fiber-distributed Ultra-wideband noise radar with steerable power spectrum and colorless base station," Opt. Express 22, 4896-4907 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-5-4896


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Porcino, W. Hirt, “Ultra-wideband radio technology: Potential and challenges ahead,” IEEE Commun. Mag. 41(7), 66–74 (2003). [CrossRef]
  2. H. Sun, Y. Lu, G. Liur, “Ultra-wideband technology and random signal radar: an ideal combination,” IEEE Aerosp. Electron. Syst. Mag. 18(11), 3–7 (2003). [CrossRef]
  3. C. Lai, R. M. Narayanan, “Ultrawideband random noise radar design for through-wall surveillance,” IEEE Trans. Aerosp. Electron. Syst. 46(4), 1716–1730 (2010). [CrossRef]
  4. S. C. Surender, R. M. Narayanan, “UWB noise-OFDM netted radar: Physical layer design and analysis,” IEEE Trans. Aerosp. Electron. Syst. 47(2), 1380–1400 (2011). [CrossRef]
  5. L. Illing, D. J. Gauthier, “Ultra-high-frequency chaos in a time-delay electronic device with band-limited feedback,” Chaos 16(3), 033119 (2006). [CrossRef] [PubMed]
  6. S. M. Han, O. Popov, A. S. Dmitriev, “Flexible chaotic UWB communication system with adjustable channel bandwidth in CMOS technology,” IEEE Trans. Microwave Theory Technol. 56(10), 2229–2236 (2008). [CrossRef]
  7. M. I. Jeong, J. N. Lee, C. S. Lee, “Design of quasi-chaotic signal generation circuit for UWB chaotic-OOK system,” J. Electromagn. Waves Appl. 22(13), 1725–1733 (2008). [CrossRef]
  8. F. Y. Lin, J. M. Liu, “Chaotic radar using nonlinear laser dynamics,” IEEE J. Quantum Electron. 40(6), 815–820 (2004). [CrossRef]
  9. J.-Y. Zheng, M.-J. Zhang, A.-B. Wang, Y.-C. Wang, “Photonic generation of ultrawideband pulse using semiconductor laser with optical feedback,” Opt. Lett. 35(11), 1734–1736 (2010). [CrossRef] [PubMed]
  10. M.-J. Zhang, T.-G. Liu, A.-B. Wang, J.-Y. Zheng, L.-N. Meng, Z.-X. Zhang, Y.-C. Wang, “Photonic ultrawideband signal generator using an optically injected chaotic semiconductor laser,” Opt. Lett. 36(6), 1008–1010 (2011). [CrossRef] [PubMed]
  11. L. X. Wang, N. H. Zhu, J. Y. Zheng, J. G. Liu, W. Li, “Chaotic ultra-wideband radio generator based on an optoelectronic oscillator with a built-in microwave photonic filter,” Appl. Opt. 51(15), 2935–2940 (2012). [CrossRef] [PubMed]
  12. H.-J. Song, N. Shimizu, N. Kukutsu, T. Nagatsuma, Y. Kado, “Microwave photonic noise source from microwave to sub-Terahertz wave bands and its applications to noise characterization,” IEEE Trans. Microwave Theory Technol. 56(12), 2989–2997 (2008). [CrossRef]
  13. J.-W. Shi, F.-M. Kuo, T. Chiueh, H.-F. Teng, H. J. Tsai, N.-W. Chen, M.-L. Wu, “Photonic generation of millimeter-wave white-light at W-band using a very broadband and high-power photonic emitter,” IEEE Photonics Technol. Lett. 22(11), 847–849 (2010). [CrossRef]
  14. Y. Peled, M. Tur, A. Zadok, “Generation and detection of Ultra-wideband waveforms using stimulated Brillouin scattering amplified spontaneous emission,” IEEE Photonics Technol. Lett. 22(22), 1692–1694 (2010). [CrossRef]
  15. T. Nagatsuma, T. Kumashiro, Y. Fujimoto, K. Taniguchi, K. Ajito, N. Kukutsu, T. Furuta, A. Wakatsuki, and Y. Kado, “Millimeter-wave imaging using photonics-based noise source,” in Proceedings of 34th International Conference on Infrared, Millimeter, and Terahertz Waves (IEEE, 2009), pp. 1–2. [CrossRef]
  16. J. Yao, “Photonics for ultrawideband communications,” IEEE Microwave Mag. 10(4), 82–95 (2009). [CrossRef]
  17. J. E. Román, L. T. Nichols, K. J. Williams, R. D. Esman, G. C. Tavik, M. Livingston, M. G. Parent, “Fiber-optic remoting of an ultrahigh dynamic range radar,” IEEE Trans. Microwave Theory Technol. 46(12), 2317–2323 (1998). [CrossRef]
  18. J. B. Fu, S. L. Pan, “Fiber-connected UWB sensor network for high-resolution localization using optical time-division multiplexing,” Opt. Express 21(18), 21218–21223 (2013). [CrossRef] [PubMed]
  19. D. Grodensky, D. Kravitz, A. Zadok, “Ultra-wideband microwave-photonic noise radar based on optical waveform generation,” IEEE Photonics Technol. Lett. 24(10), 839–841 (2012).
  20. M. Hämäläinen, V. Hovinen, R. Tesi, J. H. J. Iinatti, M. Latva-aho, “On the UWB system coexistence with GSM900, UMTS/WCDMA, and GPS,” IEEE J. Sel. Areas Commun. 20(9), 1712–1721 (2002). [CrossRef]
  21. Fed. Commun. Commission, Revision of Part 15 of the Commission’s Rules Regarding Ultra-Wideband Transmission Systems, Tech. Rep. ET-Docket 98–153, FCC02–48, Apr. (2002).
  22. J. Zheng, N. Zhu, L. Wang, H. Wang, Y. Du, J. Liu, “Photonics-assistant spectra shaping of ultra-wideband signals for dynamic spectrum access in cognitive network,” Proc. SPIE 8552, 85520H (2012). [CrossRef]
  23. J. Zheng, H. Wang, L. Wang, N. Zhu, J. Liu, S. Wang, “Implementation of wavelength reusing upstream service based on distributed intensity conversion in ultrawideband-over-fiber system,” Opt. Lett. 38(7), 1167–1169 (2013). [CrossRef] [PubMed]
  24. T. Shao, J. Yao, “Wavelength reuse in a bidirectional UWB over fiber system,” Opt. Express 21(10), 11921–11927 (2013). [CrossRef] [PubMed]
  25. J. D. Bull, N. A. F. Jaeger, H. Kato, M. Fairburn, A. Reid, P. Ghanipour, “40 GHz electro-optic polarization modulator for fiber optic communications systems,” Proc. SPIE 5577, 133–143 (2004). [CrossRef]
  26. M. W. Lee, L. Larger, V. Udaltsov, E. Genin, J.-P. Goedgebuer, “Demonstration of a chaos generator with two time delays,” Opt. Lett. 29(4), 325–327 (2004). [CrossRef] [PubMed]
  27. M. Peil, M. Jacquot, Y. K. Chembo, L. Larger, T. Erneux, “Routes to chaos and multiple time scale dynamics in broadband bandpass nonlinear delay electro-optic oscillators,” Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 79(2), 026208 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited