OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 5 — Mar. 10, 2014
  • pp: 4995–5009

Common path in-line holography using enhanced joint object reference digital interferometers

Roy Kelner, Barak Katz, and Joseph Rosen  »View Author Affiliations


Optics Express, Vol. 22, Issue 5, pp. 4995-5009 (2014)
http://dx.doi.org/10.1364/OE.22.004995


View Full Text Article

Enhanced HTML    Acrobat PDF (19786 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Joint object reference digital interferometer (JORDI) is a recently developed system capable of recording holograms of various types [Opt. Lett. 38(22), 4719 (2013)]. Presented here is a new enhanced system design that is based on the previous JORDI. While the previous JORDI has been based purely on diffractive optical elements, displayed on spatial light modulators, the present design incorporates an additional refractive objective lens, thus enabling hologram recording with improved resolution and increased system applicability. Experimental results demonstrate successful hologram recording for various types of objects, including transmissive, reflective, three-dimensional, phase and highly scattering objects. The resolution limit of the system is analyzed and experimentally validated. Finally, the suitability of JORDI for microscopic applications is verified as a microscope objective based configuration of the system is demonstrated.

© 2014 Optical Society of America

OCIS Codes
(090.0090) Holography : Holography
(090.1760) Holography : Computer holography
(090.1970) Holography : Diffractive optics
(090.2880) Holography : Holographic interferometry
(100.3010) Image processing : Image reconstruction techniques
(110.6880) Imaging systems : Three-dimensional image acquisition
(180.6900) Microscopy : Three-dimensional microscopy
(090.1995) Holography : Digital holography
(070.6120) Fourier optics and signal processing : Spatial light modulators

ToC Category:
Holography

History
Original Manuscript: January 8, 2014
Revised Manuscript: February 11, 2014
Manuscript Accepted: February 13, 2014
Published: February 24, 2014

Citation
Roy Kelner, Barak Katz, and Joseph Rosen, "Common path in-line holography using enhanced joint object reference digital interferometers," Opt. Express 22, 4995-5009 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-5-4995


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Y. Rivenson, B. Katz, R. Kelner, J. Rosen, “Single channel in-line multimodal digital holography,” Opt. Lett. 38(22), 4719–4722 (2013). [CrossRef] [PubMed]
  2. B. Katz, J. Rosen, R. Kelner, G. Brooker, “Enhanced resolution and throughput of Fresnel incoherent correlation holography (FINCH) using dual diffractive lenses on a spatial light modulator (SLM),” Opt. Express 20(8), 9109–9121 (2012). [CrossRef] [PubMed]
  3. D. Gabor, “A new microscopic principle,” Nature 161(4098), 777–778 (1948). [CrossRef] [PubMed]
  4. E. N. Leith, J. Upatnieks, “Reconstructed wavefronts and communication theory,” J. Opt. Soc. Am. 52(10), 1123–1128 (1962). [CrossRef]
  5. I. Yamaguchi, T. Zhang, “Phase-shifting digital holography,” Opt. Lett. 22(16), 1268–1270 (1997). [CrossRef] [PubMed]
  6. V. Micó, J. García, Z. Zalevsky, B. Javidi, “Phase-shifting Gabor holography,” Opt. Lett. 34(10), 1492–1494 (2009). [CrossRef] [PubMed]
  7. V. Linnik, “Simple interferometer for the investigation of optical systems,” Proc. Acad. Sci. USSR 1, 208–210 (1933).
  8. R. N. Smartt, W. H. Steel, “Theory and application of point-diffraction interferometers,” Jpn. J. Appl. Phys. 14, 351–357 (1975).
  9. H. Kadono, N. Takai, T. Asakura, “New common-path phase shifting interferometer using a polarization technique,” Appl. Opt. 26(5), 898–904 (1987). [CrossRef] [PubMed]
  10. C. Ramírez, E. Otón, C. Iemmi, I. Moreno, N. Bennis, J. M. Otón, J. Campos, “Point diffraction interferometer with a liquid crystal monopixel,” Opt. Express 21(7), 8116–8125 (2013). [CrossRef] [PubMed]
  11. J. Garcia-Sucerquia, W. Xu, S. K. Jericho, P. Klages, M. H. Jericho, H. J. Kreuzer, “Digital in-line holographic microscopy,” Appl. Opt. 45(5), 836–850 (2006). [CrossRef] [PubMed]
  12. O. Mudanyali, D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, A. Ozcan, “Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab Chip 10(11), 1417–1428 (2010). [CrossRef] [PubMed]
  13. V. Arrizón, D. Sánchez-de-la-Llave, “Common-path interferometry with one-dimensional periodic filters,” Opt. Lett. 29(2), 141–143 (2004). [CrossRef] [PubMed]
  14. V. Mico, Z. Zalevsky, J. García, “Superresolution optical system by common-path interferometry,” Opt. Express 14(12), 5168–5177 (2006). [CrossRef] [PubMed]
  15. P. Gao, G. Pedrini, W. Osten, “Structured illumination for resolution enhancement and autofocusing in digital holographic microscopy,” Opt. Lett. 38(8), 1328–1330 (2013). [CrossRef] [PubMed]
  16. R. Kelner, J. Rosen, G. Brooker, “Enhanced resolution in Fourier incoherent single channel holography (FISCH) with reduced optical path difference,” Opt. Express 21(17), 20131–20144 (2013). [CrossRef] [PubMed]
  17. R. Kelner, J. Rosen, “Spatially incoherent single channel digital Fourier holography,” Opt. Lett. 37(17), 3723–3725 (2012). [CrossRef] [PubMed]
  18. O. Bryngdahl, A. Lohmann, “Variable magnification in incoherent holography,” Appl. Opt. 9(1), 231–232 (1970). [CrossRef] [PubMed]
  19. D. N. Naik, G. Pedrini, W. Osten, “Recording of incoherent-object hologram as complex spatial coherence function using Sagnac radial shearing interferometer and a Pockels cell,” Opt. Express 21(4), 3990–3995 (2013). [CrossRef] [PubMed]
  20. B. Katz, J. Rosen, “Super-resolution in incoherent optical imaging using synthetic aperture with Fresnel elements,” Opt. Express 18(2), 962–972 (2010). [CrossRef] [PubMed]
  21. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1996), Chap. 8, p. 273 and Chap. 5, p. 97.
  22. M. Born and E. Wolf, Principles of Optics (Cambridge, 1999), Chap. 8.6.3, p. 471.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited