OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 5 — Mar. 10, 2014
  • pp: 5017–5028

Holographic kinetics for mixed volume gratings in gold nanoparticles doped photopolymer

Chengmingyue Li, Liangcai Cao, Qingsheng He, and Guofan Jin  »View Author Affiliations

Optics Express, Vol. 22, Issue 5, pp. 5017-5028 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (2034 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A holographic kinetic model is proposed to quantitatively represent the dynamics of mixed volume gratings in a bulk gold nanoparticles (NPs) doped photopolymer. Due to the polymerization-driven multicomponent diffusion, the volume refractive index grating is induced by the periodic spatial distribution of photoproduct while the absorption grating is formed by the periodic spatial distribution of gold NPs. By simulating this model with the characterization of time varying absorption modulation, it is capable to describe the behavior of gold NPs in both the polymerization and the multicomponent diffusion process. The temporal evolution of refractive index modulation and absorption modulation can be extracted, respectively, from a diffraction efficiency curve by fitting the model. The established model could be an effective method for understanding the photophysical and photochemical mechanism of holographic nanocomposite.

© 2014 Optical Society of America

OCIS Codes
(050.7330) Diffraction and gratings : Volume gratings
(090.0090) Holography : Holography
(090.2900) Holography : Optical storage materials
(160.4236) Materials : Nanomaterials

ToC Category:

Original Manuscript: November 28, 2013
Revised Manuscript: February 18, 2014
Manuscript Accepted: February 18, 2014
Published: February 25, 2014

Chengmingyue Li, Liangcai Cao, Qingsheng He, and Guofan Jin, "Holographic kinetics for mixed volume gratings in gold nanoparticles doped photopolymer," Opt. Express 22, 5017-5028 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. Curtis, L. Dhar, A. Hill, W. Wilson, and M. Ayres, eds., Holographic Data Storage: From Theory to Practical Systems (John Wiley, 2010), Chap. 5, pp. 105–107.
  2. H. Wei, L. Cao, Z. Xu, Q. He, G. Jin, C. Gu, “Orthogonal polarization dual-channel holographic memory in cationic ring-opening photopolymer,” Opt. Express 14(12), 5135–5142 (2006). [CrossRef] [PubMed]
  3. S. H. Lin, K. Y. Hsu, W.-Z. Chen, W. T. Whang, “Phenanthrenequinone-doped poly(methyl methacrylate) photopolymer bulk for volume holographic data storage,” Opt. Lett. 25(7), 451–453 (2000). [CrossRef] [PubMed]
  4. N. Suzuki, Y. Tomita, “Silica-nanoparticle-dispersed methacrylate photopolymers with net diffraction efficiency near 100%,” Appl. Opt. 43(10), 2125–2129 (2004). [CrossRef] [PubMed]
  5. C. Sánchez, M. J. Escuti, C. van Heesch, C. W. M. Bastiaansen, D. J. Broer, J. Loos, R. Nussbaumer, “TiO2 Nanoparticle-photopolymer composites for volume holographic recording,” Adv. Funct. Mater. 15(10), 1623–1629 (2005). [CrossRef]
  6. N. Suzuki, Y. Tomita, K. Ohmori, M. Hidaka, K. Chikama, “Highly transparent ZrO2 nanoparticle-dispersed acrylate photopolymers for volume holographic recording,” Opt. Express 14(26), 12712–12719 (2006). [CrossRef] [PubMed]
  7. E. Hata, Y. Tomita, “Order-of-magnitude polymerization-shrinkage suppression of volume gratings recorded in nanoparticle-polymer composites,” Opt. Lett. 35(3), 396–398 (2010). [CrossRef] [PubMed]
  8. Y. Luo, J. M. Russo, R. K. Kostuk, G. Barbastathis, “Silicon oxide nanoparticles doped PQ-PMMA for volume holographic imaging filters,” Opt. Lett. 35(8), 1269–1271 (2010). [CrossRef] [PubMed]
  9. N. Suzuki, Y. Tomita, T. Kojima, “Holographic recording in TiO2 nanoparticle-dispersed methacrylate photopolymer films,” Appl. Phys. Lett. 81(22), 4121–4123 (2002). [CrossRef]
  10. N. Suzuki, Y. Tomita, “Real-time phase-shift measurement during formation of a volume holographic grating in nanoparticle-dispersed photopolymers,” Appl. Phys. Lett. 88(1), 011105 (2006). [CrossRef]
  11. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48(9), 2909–2947 (1969). [CrossRef]
  12. D. Yu, H. P. Liu, Y. Y. Jiang, X. D. Sun, “Mutual diffusion dynamics with nonlocal response in SiO2 nanoparticles dispersed PQ-PMMA bulk photopolymer,” Opt. Express 19(15), 13787–13792 (2011). [CrossRef] [PubMed]
  13. K. L. Kelly, E. Coronado, L. L. Zhao, G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003). [CrossRef]
  14. P. Zijlstra, J. W. M. Chon, M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009). [CrossRef] [PubMed]
  15. R. Sardar, A. M. Funston, P. Mulvaney, R. W. Murray, “Gold Nanoparticles: Past, Present, and Future,” Langmuir 25(24), 13840–13851 (2009). [CrossRef] [PubMed]
  16. C. Li, L. Cao, J. Li, Q. He, G. Jin, S. Zhang, F. Zhang, “Improvement of volume holographic performance by plasmon-induced holographic absorption grating,” Appl. Phys. Lett. 102(6), 061108 (2013). [CrossRef]
  17. J. H. Kwon, H. C. Hwang, K. C. Woo, “Analysis of temporal behavior of beams diffracted by volume gratings formed in photopolymers,” J. Opt. Soc. Am. B 16(10), 1651–1657 (1999). [CrossRef]
  18. A. T. Juhl, J. D. Busbee, J. J. Koval, L. V. Natarajan, V. P. Tondiglia, R. A. Vaia, T. J. Bunning, P. V. Braun, “Holographically directed assembly of polymer nanocomposites,” ACS Nano 4(10), 5953–5961 (2010). [CrossRef] [PubMed]
  19. R. A. Vaia, C. L. Dennis, L. V. Natarajan, V. P. Tondiglia, D. W. Tomlin, T. J. Bunning, “One-step, micrometer-scale organization of nano- and mesoparticles using holographic photopolymerization: A generic technique,” Adv. Mater. 13(20), 1570–1574 (2001). [CrossRef]
  20. S. H. Lin, J. H. Lin, P. L. Chen, Y. N. Shiao, K. Y. Hsu, “Doped poly(methyl methacrylate) photopolymers for holographic data storage,” J. Nonlinear Opt. Phys. Mater. 15(02), 239–252 (2006). [CrossRef]
  21. K. Y. Hsu, S. H. Lin, Y. N. Hsiao, W. T. Whang, “Experimental characterization of phenanthrenequinone-doped poly(methyl methacrylate) photopolymer for volume holographic storage,” Opt. Eng. 42(5), 1390–1396 (2003). [CrossRef]
  22. S. Liu, M. R. Gleeson, J. X. Guo, J. T. Sheridan, E. Tolstik, V. Matusevich, R. Kowarschik, “Modeling the photochemical kinetics induced by holographic exposures in PQ/PMMA photopolymer material,” J. Opt. Soc. Am. B 28(11), 2833–2843 (2011). [CrossRef]
  23. C. E. Close, M. R. Gleeson, D. A. Mooney, J. T. Sheridan, “Monomer diffusion rates in photopolymer material. Part II. High-frequency gratings and bulk diffusion,” J. Opt. Soc. Am. B 28(4), 842–850 (2011). [CrossRef]
  24. M. R. Gleeson, S. Liu, J. X. Guo, J. T. Sheridan, “Nonlocal photopolymerization kinetics including multiple termination mechanisms and dark reactions: Part III. Primary radical generation and inhibition,” J. Opt. Soc. Am. B 27(9), 1804–1812 (2010). [CrossRef]
  25. J. T. Sheridan, J. R. Lawrence, “Nonlocal-response diffusion model of holographic recording in photopolymer,” J. Opt. Soc. Am. A 17(6), 1108–1114 (2000). [CrossRef] [PubMed]
  26. I. Aubrecht, M. Miler, I. Koudela, “Recording of holographic diffraction gratings in photopolymers: theoretical modelling and real-time monitoring of grating growth,” J. Mod. Opt. 45(7), 1465–1477 (1998). [CrossRef]
  27. S. Link, M. A. El-Sayed, “Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals,” Int. Rev. Phys. Chem. 19(3), 409–453 (2000). [CrossRef]
  28. L. M. Goldenberg, O. V. Sakhno, T. N. Smimova, P. Helliwell, V. Chechik, J. Stumpe, “Holographic composites with gold nanoparticles: Nanoparticles promote polymer segregation,” Chem. Mater. 20(14), 4619–4627 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited