OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 5 — Mar. 10, 2014
  • pp: 5076–5085

Generation of silver nanoparticles with controlled size and spatial distribution by pulsed laser irradiation of silver ion-doped glass

Stefan Wackerow and Amin Abdolvand  »View Author Affiliations

Optics Express, Vol. 22, Issue 5, pp. 5076-5085 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (6926 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Silver ions were driven into glass by a direct current electric field-assisted ion exchange technique. The silver ion exchanged glass was then irradiated by laser pulses of 10 ns and 10 ps in length at 355 nm for comparison purposes. In both cases, laser irradiation led to the formation of a metallic-like film at the surface of the ion exchange glass. Scanning electron microscopy showed that the films consist of a very dense single layer of silver nanoparticles with similar particle sizes and separation. Irradiation with different laser parameters shows no significant difference in transmission spectra and modification width between ps- and ns-pulsed lasers. Particle sizes and separation at the surface are increasing with increasing laser power, and are larger for picosecond pulsed laser irradiation. It is also shown that the film formation is a thermal process.

© 2014 Optical Society of America

OCIS Codes
(140.3390) Lasers and laser optics : Laser materials processing
(160.2750) Materials : Glass and other amorphous materials
(160.4670) Materials : Optical materials
(160.4236) Materials : Nanomaterials

ToC Category:
Laser Microfabrication

Original Manuscript: January 6, 2014
Revised Manuscript: February 12, 2014
Manuscript Accepted: February 16, 2014
Published: February 25, 2014

Stefan Wackerow and Amin Abdolvand, "Generation of silver nanoparticles with controlled size and spatial distribution by pulsed laser irradiation of silver ion-doped glass," Opt. Express 22, 5076-5085 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1995).
  2. M. Dragoman, D. Dragoman, “Plasmonics: Applications to nanoscale terahertz and optical devices,” Prog. Quantum Electron. 32(1), 1–41 (2008). [CrossRef]
  3. S. Wackerow, G. Seifert, A. Abdolvand, “Homogenous silver-doped nanocomposite glass,” Opt. Mater. Express 1(7), 1224–1231 (2011). [CrossRef]
  4. S. Wackerow, A. Abdolvand, “Laser-assisted one-step fabrication of homogeneous glass–silver composite,” Appl. Phys., A Mater. Sci. Process. 109, 1–5 (2012).
  5. A. Campion, P. Kambhampati, “Surface-enhanced Raman scattering,” Chem. Soc. Rev. 27(4), 241–250 (1998). [CrossRef]
  6. A. V. Zayats, I. I. Smolyaninov, “Near-field photonics: surface plasmon polaritons and localized surface plasmons,” J. Opt. A, Pure Appl. Opt. 5(4), S16–S50 (2003). [CrossRef]
  7. M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008). [CrossRef] [PubMed]
  8. S. A. Maier, P. G. Kik, H. A. Atwater, “Observation of coupled plasmon-polariton modes in Au nanoparticle chain waveguides of different lengths: Estimation of waveguide loss,” Appl. Phys. Lett. 81(9), 1714–1716 (2002). [CrossRef]
  9. M. Quinten, A. Leitner, J. R. Krenn, F. R. Aussenegg, “Electromagnetic energy transport via linear chains of silver nanoparticles,” Opt. Lett. 23(17), 1331–1333 (1998). [CrossRef] [PubMed]
  10. P. A. Kilty, W. M. H. Sachtler, “The mechanism of the selective oxidation of ethylene to ethylene oxide,” Catal. Rev. 10(1), 1–16 (1974). [CrossRef]
  11. P. V. Kamat, “Photophysical, photochemical and photocatalytic aspects of metal nanoparticles,” J. Phys. Chem. B 106(32), 7729–7744 (2002). [CrossRef]
  12. S. Wackerow, A. Abdolvand, “Optical analyses of the formation of a silver nanoparticle-containing layer in glass,” Opt. Express 20(21), 23227–23234 (2012). [CrossRef] [PubMed]
  13. J. Krüger and W. Kautek, “Ultrashort pulse laser interaction with dielectrics and polymers,” in Polymers and Light (Springer, 2004), pp. 247–290.
  14. J. M. Liu, “Simple technique for measurements of pulsed Gaussian-beam spot sizes,” Opt. Lett. 7(5), 196–198 (1982). [CrossRef] [PubMed]
  15. G. Tang, A. Abdolvand, “Structuring of titanium using a nanosecond-pulsed Nd: YVO4 laser at 1064 nm,” Int. J. Adv. Manuf. Tech. 66, 1769–1775 (2013).
  16. J. J. Shiang, J. R. Heath, C. P. Collier, R. J. Saykally, “Cooperative Phenomena in Artificial Solids Made from Silver Quantum Dots: The Importance of Classical Coupling,” J. Phys. Chem. B 102(18), 3425–3430 (1998). [CrossRef]
  17. H. L. Schick, “A Thermodynamic Analysis of the High-temperature Vaporization Properties of Silica,” Chem. Rev. 60(4), 331–362 (1960). [CrossRef]
  18. A. Helebrant, C. Buerhop, R. Weissmann, “Mathematical modelling of temperature distribution during CO 2 laser irradiation of glass,” Glass Technol 34, 154–158 (1993).
  19. M. Shimizu, M. Sakakura, M. Ohnishi, Y. Shimotsuma, T. Nakaya, K. Miura, K. Hirao, “Mechanism of heat-modification inside a glass after irradiation with high-repetition rate femtosecond laser pulses,” J. Appl. Phys. 108(7), 073533 (2010). [CrossRef]
  20. M. N. Özıñsık, Heat Conduction (Wiley (New York), 1993), Vol. 2.
  21. K. Saito, A. J. Ikushima, “Absorption edge in silica glass,” Phys. Rev. B 62(13), 8584–8587 (2000). [CrossRef]
  22. D. Gödeke, M. Müller, C. Rüssel, “High-temperature UV-VIS-NIR absorption and emission spectroscopy of soda-lime-silica glasses doped with Nd2O3,” Glass Sci Technol 76, 28–32 (2003).
  23. R. K. Singh, D. Bhattacharya, J. Narayan, “Subsurface heating effects during pulsed laser evaporation of materials,” Appl. Phys. Lett. 57(19), 2022–2024 (1990). [CrossRef]
  24. S. J. Henley, J. D. Carey, S. R. P. Silva, “Metal nanoparticle production by pulsed laser nanostructuring of thin metal films,” Appl. Surf. Sci. 253(19), 8080–8085 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited