OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 5 — Mar. 10, 2014
  • pp: 5086–5097

The impact of emission mechanisms on the long-lived states around avoided resonance crossings in chaotic microcavity

Shuai Liu, Chao Zeng, Zhiyuan Gu, Kaiyang Wang, Nan Zhang, Shang Sun, Shumin Xiao, and Qinghai Song  »View Author Affiliations

Optics Express, Vol. 22, Issue 5, pp. 5086-5097 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (3308 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Here we demonstrate the impacts of emission mechanisms on the light confinements in open systems. Taking the oval-shaped cavities as examples, we show that the enhancements in quality (Q) factors are usually associated with the universal emissions. When the coupled resonances have similar far field patterns, the Q factor of the long-lived resonance has the possibility to be enhanced by the coherent destruction at the decay channels. Otherwise, the Q factors of long-lived resonances are usually reduced around the level crossings.

© 2014 Optical Society of America

OCIS Codes
(140.1540) Lasers and laser optics : Chaos
(140.3945) Lasers and laser optics : Microcavities

ToC Category:
Quantum Optics

Original Manuscript: January 9, 2014
Revised Manuscript: February 11, 2014
Manuscript Accepted: February 12, 2014
Published: February 25, 2014

Shuai Liu, Chao Zeng, Zhiyuan Gu, Kaiyang Wang, Nan Zhang, Shang Sun, Shumin Xiao, and Qinghai Song, "The impact of emission mechanisms on the long-lived states around avoided resonance crossings in chaotic microcavity," Opt. Express 22, 5086-5097 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. N. Moiseyev, Non-Hermitian Quantum Mechanics (Cambridge University, 2011).
  2. Q. H. Song, L. Ge, B. Redding, H. Cao, “Channeling chaotic rays into waveguides for efficient collection of microcavity emission,” Phys. Rev. Lett. 108, 243902, 2012). [CrossRef] [PubMed]
  3. D. K. Ferry, R. Akis, J. P. Bird, “Einselection in action: decoherence and pointer states in open quantum dots,” Phys. Rev. Lett. 93, 026803, 2004). [CrossRef] [PubMed]
  4. Q. H. Song, H. Cao, “Improving optical confinement in nanostructures via external mode coupling,” Phys. Rev. Lett. 105, 053902, 2010). [CrossRef] [PubMed]
  5. J. Burgdorfer, X. Z. Yang, J. Muller, “Parametric variation of resonances for regular and chaotic scattering,” Chaos Solutions & Fractals 5, 1235–1273 (1995). [CrossRef]
  6. K. Srinivasan, O. Painter, “Linear and nonlinear optical spectroscopy of a strongly coupled microdisk-quantum dot system,” Nature 450, 862–866 (2007). [CrossRef] [PubMed]
  7. V. A. Podolskiy, E. E. Narimanov, W. Fang, H. Cao, “Chaotic microlasers based on dynamical localization,” Proc Natl Acad Sci USA 101, 10498–10500 (2004). [CrossRef] [PubMed]
  8. A. Bäcker, R. Ketzmerick, S. Löck, L. Schilling, “Regular-to-chaotic tunneling rates using a fictitious integrable system,” Phys. Rev. Lett. 100, 104101, 2008). [CrossRef] [PubMed]
  9. V. A. Podolskiy, E. E. Narimanov, “Semiclassical description of chaos-assisted tunneling,” Phys. Rev. Lett. 91, 263601, 2003). [CrossRef]
  10. J. U. Nöckel, A. D. Stone, “Ray and wave chaos in asymmetric resonant optical cavities,” Nature 385, 45–47 (1997). [CrossRef]
  11. F. Grossmann, T. Dittrich, P. Jung, P. Hanggi, “Coherent destruction of the tunneling,” Phys. Rev. Lett. 67, 516–519 (1991). [CrossRef] [PubMed]
  12. Q. H. Song, C. Zeng, S. M. Xiao, “Coherent destruction of dynamical tunneling in asymmetrical resonant cavities,” Phys. Rev. A 87, 013831, 2013). [CrossRef]
  13. Y. Kayanuma, K. Saito, “Coherent destruction of tunneling, dynamic localization, and the Landau-Zener formula,” Phys. Rev. A 77, 010101(R) (2008). [CrossRef]
  14. W. D. Heiss, “Repulsion of resonance states and exceptional points,” Phys. Rev. E 61, 929–932 (2000). [CrossRef]
  15. J. Wiersig, “Formation of long-lived, scarlike modes near avoided resonance crossings in optical microcavities,” Phys. Rev. Lett. 97, 253901, 2006). [CrossRef]
  16. M. Müller, I. Rotter, “Exceptional points in open quantum systems,” J. Phys. A 41, 244018, 2008). [CrossRef]
  17. S.-B. Lee, J. Yang, S. Moon, S.-Y. Lee, J.-B. Shim, S. W. Kim, J.-H. Lee, K. An, “Observation of an exceptional point in a chaotic optical microcavity,” Phys. Rev. Lett. 103, 134101, 2009). [CrossRef] [PubMed]
  18. M. Bhattacharya, C. Raman, “Detecting level crossings without looking at the spectrum,” Phys. Rev. Lett. 97, 140405, 2006). [CrossRef] [PubMed]
  19. E. Persson, I. Rotter, H. J. Stockmann, M. Barth, “Observation of resonance trapping in an open microwave cavity,” Phys. Rev. Lett. 85, 2478–2481 (2000). [CrossRef] [PubMed]
  20. Q. H. Song, L. Ge, A. D. Stone, H. Cao, J. Wiersig, J-B. Shim, J. Unterhinninghofen, W. Fang, G. S. Solomon, “Directional laser emission from a wavelength-scale chaotic microcavity,” Phys. Rev. Lett. 105, 103902, 2010). [CrossRef] [PubMed]
  21. J-W Ryu, S-Y. Lee, S. W. Kim, “Coupled nonidentical microdisks: Avoided crossing of energy levels and unidirectional far-field emission,” Phys. Rev. A 79, 053858, 2012). [CrossRef]
  22. J. Wiersig, M. Hentschel, “Unidirectional light emission from high-Q modes in optical microcavities,” Phys. Rev. Lett. 73, 031802(R) (2006).
  23. Q. H. Song, L. Ge, J. Wiersig, H. Cao, “Formation of long-lived resonances in hexagonal cavities by strong coupling of superscar modes,” Phys. Rev. A 88, 023834, 2013). [CrossRef]
  24. C. Gamachl, F. Capasso, E. E. Narimanov, J. U. Nöckel, A. D. Stone, J. Faist, D. L. Sivco, A. Y. Cho, “High-power directional emission from microlasers with chaotic resonators,” Science 280, 1556–1564 (1998). [CrossRef]
  25. S. Shinohara, T. Harayama, T. Fukushima, M. Hentschel, T. Sasaki, E. E. Narimanov, “Chaos-assisted directional light emission from microcavity lasers,” Phys. Rev. Lett. 104, 163902, 2010). [CrossRef] [PubMed]
  26. J. Wiersig, M. Hentschel, “Combining directional light output and ultralow loss in deformed microdisks,” Phys. Rev. Lett. 100, 033901, 2008). [CrossRef] [PubMed]
  27. Q. H. Song, W. Fang, B. Y. Liu, S. T. Ho, G. S. Solomon, H. Cao, “Chaotic microcavity laser with high quality factor and unidirectional output,” Phys. Rev. A 80, 041807(R) (2009). [CrossRef]
  28. S. M. Xiao, Z. Y. Gu, S. Liu, Q. H. Song, “Direct modulation of microcavity emission via local perturbation,” Phys. Rev. A 88, 053833, 2013). [CrossRef]
  29. H. G. L. Schwefel, N. B. Rex, H. E. Türeci, R. K. Chang, A. D. Stone, T. Ben-Messaoud, J. Zyss, “Dramatic shape sensitivity of directional emission patterns from similarly deformed cylindrical polymer lasers,” J. Opt. Soc. Am. B 21, 923–934 (2004). [CrossRef]
  30. S.-B. Lee, J. Yang, S. Moon, J.-H. Lee, K. An, J.-B. Shim, H. W. Lee, S. W. Kim, “Universal output directionality of single modes in a deformed microcavity,” Phys. Rev. A 75, 011802, 2007). [CrossRef]
  31. S. Shinohara, T. Harayama, “Signature of ray chaos in quasibound wave functions for a stadium-shaped dielectric cavity,” Phys. Rev. E 75, 036216, 2007). [CrossRef]
  32. M. Hentschel, H. Schomerus, R. Schubert, “Husimi functions at dielectric interfaces: Inside-outside duality for optical systems and beyond,” Europhys. Lett. 62, 636–642 (2003). [CrossRef]
  33. H. E. Türeci, H. G. L. Schwefel, P. Jacquod, A. D. Stone, “Modes of wave-chaotic dielectric resonators,” Prog. Opt. 47, 75–137 (2005). [CrossRef]
  34. L. Ge, Q. H. Song, B. Redding, H. Cao, “Extreme output sensitivity to subwavelength boundary deformation in microcavities,” Phys. Rev. A 87, 023833, 2013). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited