OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 5 — Mar. 10, 2014
  • pp: 5118–5123

Kerr-lens mode-locked femtosecond polycrystalline Cr2+:ZnS and Cr2+:ZnSe lasers

Sergey Vasilyev, Mike Mirov, and Valentin Gapontsev  »View Author Affiliations


Optics Express, Vol. 22, Issue 5, pp. 5118-5123 (2014)
http://dx.doi.org/10.1364/OE.22.005118


View Full Text Article

Enhanced HTML    Acrobat PDF (1017 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report the first Kerr-lens mode-locked polycrystalline Cr2+:ZnS and Cr2+:ZnSe lasers, with pulse duration of 125 fs at a pulse repetition rate of 160 MHz, emitting around 2.3 – 2.4 µm. The mode-locked lasers were pumped by a radiation of 1550 nm Er-fiber amplifier seeded by semiconductor laser. The long-term stable Kerr-lens mode-locked laser operation with the output power of 30 mW (Cr2+:ZnS) and 60 mW (Cr2+:ZnSe) was obtained. We also demonstrate amplification of the fs laser pulse train in a cw pumped single-pass polycrystalline Cr2+:ZnS laser amplifier.

© 2014 Optical Society of America

OCIS Codes
(140.3070) Lasers and laser optics : Infrared and far-infrared lasers
(140.5680) Lasers and laser optics : Rare earth and transition metal solid-state lasers
(140.7090) Lasers and laser optics : Ultrafast lasers

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: December 5, 2013
Revised Manuscript: January 29, 2014
Manuscript Accepted: February 19, 2014
Published: February 26, 2014

Citation
Sergey Vasilyev, Mike Mirov, and Valentin Gapontsev, "Kerr-lens mode-locked femtosecond polycrystalline Cr2+:ZnS and Cr2+:ZnSe lasers," Opt. Express 22, 5118-5123 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-5-5118


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. B. Mirov, V. V. Fedorov, I. S. Moskalev, D. Martyshkin, C. Kim, “Progress in Cr2+ and Fe2+ doped mid-IR laser materials,” Laser & Photon. Rev. 4(1), 21–41 (2010). [CrossRef]
  2. http://www.ipgphotonics.com/Collateral/Documents/English-US/FFML_IPG_datasheet.pdf
  3. K. L. Vodopyanov, E. Sorokin, I. T. Sorokina, P. G. Schunemann, “Mid-IR frequency comb source spanning 4.4-5.4 μm based on subharmonic GaAs optical parametric oscillator,” Opt. Lett. 36(12), 2275–2277 (2011). [CrossRef] [PubMed]
  4. N. Leindecker, A. Marandi, R. L. Byer, K. L. Vodopyanov, J. Jiang, I. Hartl, M. Fermann, P. G. Schunemann, “Octave-spanning ultrafast OPO with 2.6-6.1 µm instantaneous bandwidth pumped by femtosecond Tm-fiber laser,” Opt. Express 20(7), 7046–7053 (2012). [CrossRef] [PubMed]
  5. V. V. Fedorov, D. V. Martyshkin, M. S. Mirov, I. S. Moskalev, S. Vasyliev, J. Peppers, S. B. Mirov, and V. P. Gapontsev, “Fe-doped II-VI mid-Infrared laser materials for the 3 to 8 um region,” in The Conference on Lasers and Electro-Optics (CLEO)/The International Quantum Electronics Conference (IQEC), (invited), San Jose, CA, June 11–13, 2013.
  6. C. Pollock, N. Brilliant, D. Gwin, T. J. Carrig, W. J. Alford, J. B. Heroux, W. I. Wang, I. Vurgaftman, and J. R. Meyer, “Mode locked and Q-switched Cr:ZnSe laser using a semiconductor saturable absorbing mirror (SESAM),” in Advanced Solid-State Photonics, Technical Digest (Optical Society of America, 2005), paper TuA6.
  7. I. T. Sorokina, E. Sorokin, and T. Carrig, “Femtosecond pulse generation from a SESAM mode-locked Cr:ZnSe laser,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2006), paper CMQ2. [CrossRef]
  8. E. Sorokin, N. Tolstik, K. I. Schaffers, I. T. Sorokina, “Femtosecond SESAM-modelocked Cr:ZnS laser,” Opt. Express 20(27), 28947–28952 (2012). [CrossRef] [PubMed]
  9. B. Bernhardt, E. Sorokin, P. Jacquet, R. Thon, T. Becker, I. T. Sorokina, N. Picqué, T. W. Hänsch, “Mid-infrared dual-comb spectroscopy with 2.4 μm Cr2+:ZnSe femtosecond lasers,” Appl. Phys. B 100(1), 3–8 (2010). [CrossRef]
  10. P. Moulton and E. Slobodchikov, “1-GW-peak-power, Cr:ZnSe laser,” in CLEO:2011 - Laser Applications to Photonic Applications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper PDPA10.
  11. M. N. Cizmeciyan, H. Cankaya, A. Kurt, A. Sennaroglu, “Kerr-lens mode-locked femtosecond Cr2+:ZnSe laser at 2420 nm,” Opt. Lett. 34(20), 3056–3058 (2009). [CrossRef] [PubMed]
  12. N. Tolstik, E. Sorokin, I. T. Sorokina, “Kerr-lens mode-locked Cr:ZnS laser,” Opt. Lett. 38(3), 299–301 (2013). [CrossRef] [PubMed]
  13. M. N. Cizmeciyan, H. Cankaya, A. Kurt, A. Sennaroglu, “Operation of femtosecond Kerr-lens mode-locked Cr:ZnSe lasers with different dispersion compensation methods,” Appl. Phys. B 106(4), 887–892 (2012). [CrossRef]
  14. N. Tolstik, I. T. Sorokina, and E. Sorokin, “Watt-level kerr-lens mode-locked Cr:ZnS laser at 2.4 μm,” in CLEO: 2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper CTh1H.2.
  15. I. S. Moskalev, V. V. Fedorov, and S. B. Mirov, “Self-starting kerr-mode-locked polycrystalline Cr2+:ZnSe laser,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2008), paper CFI3.
  16. S. Mirov, V. Fedorov, I. Moskalev, D. Martyshkin, “Recent progress in transition metal doped II–VI mid-IR lasers,” J. Sel. Top. Quantum Electron. 13(3), 810–822 (2007). [CrossRef]
  17. F. Salin, “Ultrafast solid-state amplifiers,” in Ultrafast lasers: Technology and applications, M.E. Fermann, A. Galvanauskas, G. Sucha, eds. (Marcel Dekker 2003), Chap. 2, pp. 61–88.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited