OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 5 — Mar. 10, 2014
  • pp: 5155–5165

Size dependence of band-gaps in a one-dimensional plasmonic crystal

Hiroaki Watanabe, Masahiro Honda, and Naoki Yamamoto  »View Author Affiliations

Optics Express, Vol. 22, Issue 5, pp. 5155-5165 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (3285 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The dependence of the plasmonic band gap on size of a one-dimensional plasmonic crystal with a rectangular cross-section has been investigated by cathodoluminescence, using a 200-keV scanning transmission electron microscope. The band edge character at points Γ and X changes in correlation with the corresponding Fourier component of the surface shape. The calculation by the rigorous coupled-wave analysis (RCWA) method reproduces well the observed size dependence of the band edge energies on terrace width and height, though some deviation in magnitude remains. The beam-scan spectral images clearly reveal symmetric and anti-symmetric characters of the standing waves of the band edge modes. The two modes at the band edges are different in the surface plasmon Polariton (SPP)-light conversion efficiency and exchange their energy positions by changing terrace width.

© 2014 Optical Society of America

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(250.1500) Optoelectronics : Cathodoluminescence
(250.5403) Optoelectronics : Plasmonics

ToC Category:

Original Manuscript: January 7, 2014
Revised Manuscript: February 10, 2014
Manuscript Accepted: February 17, 2014
Published: February 26, 2014

Hiroaki Watanabe, Masahiro Honda, and Naoki Yamamoto, "Size dependence of band-gaps in a one-dimensional plasmonic crystal," Opt. Express 22, 5155-5165 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1988).
  2. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  3. M. U. González, J.-C. Weeber, A.-L. Baudrion, A. Dereux, A. L. Stepanov, J. R. Krenn, E. Devaux, T. W. Ebbesen, “Design, near-field characterization, and modeling of 45° surface-plasmon Bragg mirrors,” Phys. Rev. B 73(15), 155416 (2006). [CrossRef]
  4. S. I. Bozhevolnyi, J. Erland, K. Leosson, P. M. W. Skovgaard, J. M. Hvam, “Waveguiding in surface plasmon polariton band gap structures,” Phys. Rev. Lett. 86(14), 3008–3011 (2001). [CrossRef] [PubMed]
  5. Y. Gong, J. Vučković, “Design of plasmon cavities for solid-state cavity quantum electrodynamics applications,” Appl. Phys. Lett. 90(3), 033113 (2007). [CrossRef]
  6. C. Valsecchi, A. G. Brolo, “Periodic metallic nanostructures as plasmonic chemical sensors,” Langmuir 29(19), 5638–5649 (2013). [CrossRef] [PubMed]
  7. H. A. Atwater, A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010). [CrossRef] [PubMed]
  8. T. Okamoto, J. Simonen, S. Kawata, “Plasmonic band gaps of structured metallic thin films evaluated for a surface plasmon laser using the coupled-wave approach,” Phys. Rev. B 77(11), 115425 (2008). [CrossRef]
  9. A. M. Lakhani, M. K. Kim, E. K. Lau, M. C. Wu, “Plasmonic crystal defect nanolaser,” Opt. Express 19(19), 18237–18245 (2011). [CrossRef] [PubMed]
  10. J. C. Weeber, Y. Lacroute, A. Dereux, E. Devaux, T. Ebbesen, C. Girard, M. U. González, A.-L. Baudrion, “Near-field characterization of Bragg mirrors engraved in surface plasmon waveguides,” Phys. Rev. B 70(23), 235406 (2004). [CrossRef]
  11. M. V. Bashevoy, F. Jonsson, A. V. Krasavin, N. I. Zheludev, Y. Chen, M. I. Stockman, “Generation of traveling surface plasmon waves by free-electron impact,” Nano Lett. 6(6), 1113–1115 (2006). [CrossRef] [PubMed]
  12. J. E. Kihm, Y. C. Yoon, D. J. Park, Y. H. Ahn, C. Ropers, C. Lienau, J. Kim, Q. H. Park, D. S. Kim, “Fabry-Perot tuning of the band-gap polarity in plasmonic crystals,” Phys. Rev. B 75(3), 035414 (2007). [CrossRef]
  13. T. Suzuki, N. Yamamoto, “Cathodoluminescent spectroscopic imaging of surface plasmon polaritons in a 1-dimensional plasmonic crystal,” Opt. Express 17(26), 23664–23671 (2009). [CrossRef] [PubMed]
  14. W. L. Barnes, T. W. Preist, S. C. Kitson, J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B Condens. Matter 54(9), 6227–6244 (1996). [CrossRef] [PubMed]
  15. A. V. Zayats, I. I. Smolyaninov, A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3–4), 131–314 (2005). [CrossRef]
  16. G. Lévêque, O. J. F. Martin, “Optimization of finite diffraction gratings for the excitation of surface plasmons,” J. Appl. Phys. 100, 124301 (2006). [CrossRef]
  17. C. Brucoli, L. Martín-Moreno, “Effect of defect depth on surface plasmon scattering by subwavelength surface defects,” Phys. Rev. B 83(7), 075433 (2011). [CrossRef]
  18. H. Iwase, D. Englund, J. Vucković, “Analysis of the Purcell effect in photonic and plasmonic crystals with losses,” Opt. Express 18(16), 16546–16560 (2010). [CrossRef] [PubMed]
  19. T. Okamoto, S. Kawata, “Dispersion relation and radiation properties of plasmonic crystals with triangular lattices,” Opt. Express 20(5), 5168–5177 (2012). [CrossRef] [PubMed]
  20. K. Takeuchi, N. Yamamoto, “Visualization of surface plasmon polariton waves in two-dimensional plasmonic crystal by cathodoluminescence,” Opt. Express 19(13), 12365–12374 (2011). [CrossRef] [PubMed]
  21. M. Honda, N. Yamamoto, “Size dependence of surface plasmon modes in one-dimensional plasmonic crystal cavities,” Opt. Express 21(10), 11973–11983 (2013). [CrossRef] [PubMed]
  22. N. Yamamoto, The Transmission Electron Microscope (InTech, 2011), Chap. 15.
  23. F. J. García de Abajo, M. Kociak, “Probing the photonic local density of states with electron energy loss spectroscopy,” Phys. Rev. Lett. 100(10), 106804 (2008). [CrossRef] [PubMed]
  24. M. Kuttge, E. J. R. Vesseur, A. F. Koenderink, H. J. Lezec, H. Atwater, F. García de Abajo, A. Polman, “Local density of states, spectrum, and far-field interference of surface plasmon polaritons probed by cathodoluminescence,” Phys. Rev. B 79(11), 113405 (2009). [CrossRef]
  25. G. Boudarham, N. Feth, V. Myroshnychenko, S. Linden, J. García de Abajo, M. Wegener, M. Kociak, “Spectral imaging of individual split-ring resonators,” Phys. Rev. Lett. 105(25), 255501 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited