OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 5 — Mar. 10, 2014
  • pp: 5177–5182

Laser emission from diode-pumped Nd:YAG ceramic waveguide lasers realized by direct femtosecond-laser writing technique

Gabriela Salamu, Florin Jipa, Marian Zamfirescu, and Nicolaie Pavel  »View Author Affiliations

Optics Express, Vol. 22, Issue 5, pp. 5177-5182 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (2192 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report on realization of buried waveguides in Nd:YAG ceramic media by direct femtosecond-laser writing technique and investigate the waveguides laser emission characteristics under the pump with fiber-coupled diode lasers. Laser pulses at 1.06 μm with energy of 2.8 mJ for the pump with pulses of 13.1-mJ energy and continuous-wave output power of 0.49 W with overall optical efficiency of 0.13 were obtained from a 100-μm diameter circular cladding waveguide realized in a 0.7-at.% Nd:YAG ceramic. A circular waveguide of 50-μm diameter yielded laser pulses at 1.3 μm with 1.2-mJ energy.

© 2014 Optical Society of America

OCIS Codes
(140.3530) Lasers and laser optics : Lasers, neodymium
(140.3580) Lasers and laser optics : Lasers, solid-state
(230.7380) Optical devices : Waveguides, channeled
(130.3990) Integrated optics : Micro-optical devices

ToC Category:
Planar Waveguide Lasers

Original Manuscript: January 6, 2014
Revised Manuscript: February 10, 2014
Manuscript Accepted: February 16, 2014
Published: February 27, 2014

Virtual Issues
2013 Advanced Solid State Lasers (2013) Optics Express

Gabriela Salamu, Florin Jipa, Marian Zamfirescu, and Nicolaie Pavel, "Laser emission from diode-pumped Nd:YAG ceramic waveguide lasers realized by direct femtosecond-laser writing technique," Opt. Express 22, 5177-5182 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. Grivas, “Optically pumped planar waveguide lasers, Part I: Fundamentals and fabrication techniques,” Prog. Quantum Electron. 35(6), 159–239 (2011). [CrossRef]
  2. F. Chen and J. R. V’azquez de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining,” Laser Photonics Rev. doi: (2013). [CrossRef]
  3. K. M. Davis, K. Miura, N. Sugimoto, K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21(21), 1729–1731 (1996). [CrossRef] [PubMed]
  4. A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, F. Jaque, L. Roso, D. Jaque, “Refractive index change mechanisms in femtosecond laser written ceramic Nd:YAG waveguides: micro-spectroscopy experiments and beam propagation calculations,” Appl. Phys. B 95(1), 85–96 (2009). [CrossRef]
  5. T. Calmano, J. Siebenmorgen, O. Hellmig, K. Petermann, G. Huber, “Nd:YAG waveguide laser with 1.3 W output power, fabricated by direct femtosecond laser writing,” Appl. Phys. B 100(1), 131–135 (2010). [CrossRef]
  6. G. A. Torchia, A. Rodenas, A. Benayas, E. Cantelar, L. Roso, D. Jaque, “Highly efficient laser action in femtosecond-written Nd:yttrium aluminum garnet ceramic waveguides,” Appl. Phys. Lett. 92(11), 111103 (2008). [CrossRef]
  7. Y. Tan, A. Rodenas, F. Chen, R. R. Thomson, A. K. Kar, D. Jaque, Q. M. Lu, “70% slope efficiency from an ultrafast laser-written Nd:GdVO4 channel waveguide laser,” Opt. Express 18(24), 24994–24999 (2010). [CrossRef] [PubMed]
  8. J. Siebenmorgen, T. Calmano, K. Petermann, G. Huber, “Highly efficient Yb:YAG channel waveguide laser written with a femtosecond-laser,” Opt. Express 18(15), 16035–16041 (2010). [CrossRef] [PubMed]
  9. S. Müller, T. Calmano, P. Metz, N.-O. Hansen, C. Kränkel, G. Huber, “Femtosecond-laser-written diode-pumped Pr:LiYF4 waveguide laser,” Opt. Lett. 37(24), 5223–5225 (2012). [CrossRef] [PubMed]
  10. A. G. Okhrimchuk, A. V. Shestakov, I. Khrushchev, J. Mitchell, “Depressed cladding, buried waveguide laser formed in a YAG:Nd3+ crystal by femtosecond laser writing,” Opt. Lett. 30(17), 2248–2250 (2005). [CrossRef] [PubMed]
  11. A. Okhrimchuk, V. Mezentsev, A. Shestakov, I. Bennion, “Low loss depressed cladding waveguide inscribed in YAG:Nd single crystal by femtosecond laser pulses,” Opt. Express 20(4), 3832–3843 (2012). [CrossRef] [PubMed]
  12. H. Liu, Y. Jia, J. R. Vázquez de Aldana, D. Jaque, F. Chen, “Femtosecond laser inscribed cladding waveguides in Nd:YAG ceramics: Fabrication, fluorescence imaging and laser performance,” Opt. Express 20(17), 18620–18629 (2012). [CrossRef] [PubMed]
  13. Y. Ren, G. Brown, A. Ródenas, S. Beecher, F. Chen, A. K. Kar, “Mid-infrared waveguide lasers in rare-earth-doped YAG,” Opt. Lett. 37(16), 3339–3341 (2012). [CrossRef] [PubMed]
  14. H. Liu, F. Chen, J. R. Vázquez de Aldana, D. Jaque, “Femtosecond-laser inscribed double-cladding waveguides in Nd:YAG crystal: a promising prototype for integrated lasers,” Opt. Lett. 38(17), 3294–3297 (2013). [CrossRef] [PubMed]
  15. T. Calmano, J. Siebenmorgen, A.-G. Paschke, C. Fiebig, K. Paschke, G. Erbert, K. Petermann, G. Huber, “Diode pumped high power operation of a femtosecond laser inscribed Yb:YAG waveguide laser,” Opt. Mater. Express 1(3), 428–433 (2011). [CrossRef]
  16. N. Pavel, G. Salamu, F. Voicu, F. Jipa, M. Zamfirescu, T. Dascalu, “Efficient laser emission in diode-pumped Nd:YAG buried waveguides realized by direct femtosecond-laser writing,” Laser Phys. Lett. 10(9), 095802 (2013). [CrossRef]
  17. N. Pavel, V. Lupei, T. Taira, “1.34-mu m efficient laser emission in highly-doped Nd:YAG under 885-nm diode pumping,” Opt. Express 13(20), 7948–7953 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited