OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 5 — Mar. 10, 2014
  • pp: 5228–5233

Nanoscope based on nanowaveguides

A. H. Rose, B. M. Wirth, R. E. Hatem, A. P. Rashed Ahmed, M. J. Burns, M. J. Naughton, and K. Kempa  »View Author Affiliations


Optics Express, Vol. 22, Issue 5, pp. 5228-5233 (2014)
http://dx.doi.org/10.1364/OE.22.005228


View Full Text Article

Enhanced HTML    Acrobat PDF (1844 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The far field spatial resolution of conventional optical lenses is of the order of the wavelength of light, due to loss in the far field of evanescent, near electromagnetic field components. We show that subwavelength details can be restored in the far field with an array of divergent nanowaveguides, which map the discretized, subwavelength image of an object into a magnified image observable with a conventional optical microscope. We demonstrate in simulations that metallic nanowires, nanocoaxes, and nanogrooves can be used as such nanowaveguides. Thus, an optical microscope capable of subwavelength resolution — a nanoscope — can be produced, with possible applications in a variety of fields where nanoscale optical imaging is of value.

© 2014 Optical Society of America

OCIS Codes
(160.1190) Materials : Anisotropic optical materials
(230.7370) Optical devices : Waveguides
(240.6680) Optics at surfaces : Surface plasmons
(180.4243) Microscopy : Near-field microscopy
(250.5403) Optoelectronics : Plasmonics
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Microscopy

History
Original Manuscript: December 2, 2013
Revised Manuscript: February 16, 2014
Manuscript Accepted: February 19, 2014
Published: February 27, 2014

Virtual Issues
Vol. 9, Iss. 5 Virtual Journal for Biomedical Optics

Citation
A. H. Rose, B. M. Wirth, R. E. Hatem, A. P. Rashed Ahmed, M. J. Burns, M. J. Naughton, and K. Kempa, "Nanoscope based on nanowaveguides," Opt. Express 22, 5228-5233 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-5-5228


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. Abbe, “Über einen neuen beleuchtungsapparat am mikroskop,” Archiv Für Mmikroskopische Anatomie. 9(1), 469–480 (1873). [CrossRef]
  2. Max Born and Emil Wolf, Principles of Optics, (Cambridge University, 1997).
  3. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000). [CrossRef] [PubMed]
  4. Z. Jacob, L. V. Alekseyev, E. Narimanov, “Optical Hyperlens: Far-field imaging beyond the diffraction limit,” Opt. Express 14(18), 8247–8256 (2006). [CrossRef] [PubMed]
  5. A. Salandrino, N. Engheta, “Far-field subdiffraction optical microscopy using metamaterial crystals: theory and simulations,” Phys. Rev. B 74(7), 075103 (2006). [CrossRef]
  6. Z. Liu, H. Lee, Y. Xiong, C. Sun, X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007). [CrossRef] [PubMed]
  7. I. I. Smolyaninov, Y. J. Hung, C. C. Davis, “Magnifying superlens in the visible frequency range,” Science 315(5819), 1699–1701 (2007). [CrossRef] [PubMed]
  8. M. G. Silveirinha, P. A. Belov, C. R. Simovski, “Subwavelength imaging at infrared frequencies using an array of metallic nanorods,” Phys. Rev. B 75(3), 035108 (2007). [CrossRef]
  9. G. Shvets, S. Trendafilov, J. B. Pendry, A. Sarychev, “Guiding, focusing, and sensing on the subwavelength scale using metallic wire arrays,” Phys. Rev. Lett. 99(5), 053903 (2007). [CrossRef] [PubMed]
  10. Y. Zhao, “Investigation of image magnification properties of hyperlenses formed by a tapered array of metallic wires using a spatially dispersive finite-difference time-domain method in cylindrical coordinates,” J. Opt. A. Pure Appl. Opt. 14, 035102 (2012).
  11. S. Kawata, A. Ono, P. Verma, “Subwavelength colour imaging with a metallic nanolens,” Nat. Photonics 2(7), 438–442 (2008). [CrossRef]
  12. K. Kempa, X. Wang, Z. F. Ren, M. J. Naughton, “Discretely guided electromagnetic effective medium,” Appl. Phys. Lett. 92(4), 043114 (2008). [CrossRef]
  13. J. Rybczynski, K. Kempa, A. Herczynski, Y. Wang, M. J. Naughton, Z. F. Ren, Z. P. Huang, D. Cai, M. Giersig, “Subwavelength waveguide for visible light,” Appl. Phys. Lett. 90(2), 021104 (2007). [CrossRef]
  14. B. Rizal, F. Ye, P. Dhakal, T. C. Chiles, S. Shepard, G. McMahon, M. J. Burns, and M. J. Naughton, “Imprint-templated nanocoax array architecture: fabrication and utilization,” in Nano-Optics for Enhancing Light-Matter Interactions on a Molecular Scale, B. Di Bartolo, J. Collins, and L. Silvestri, eds. (Springer, Dordrecht, 2013), Chap. 18.
  15. H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95(25), 257403 (2005). [CrossRef] [PubMed]
  16. A. Manjavacas, F. J. García de Abajo, “Robust plasmon waveguides in strongly interacting nanowire arrays,” Nano Lett. 9(4), 1285–1289 (2009). [CrossRef] [PubMed]
  17. Y. Peng, K. Kempa, “Controlling light propagation with nanowires,” Appl. Phys. Lett. 100(17), 171903 (2012). [CrossRef]
  18. M. Kuttge, F. J. García de Abajo, A. Polman, “How grooves reflect and confine surfaceplasmon polaritons,” Opt. Express 17(12), 10385–10392 (2009). [CrossRef] [PubMed]
  19. C. L. C. Smith, B. Desiatov, I. Goykmann, I. Fernandez-Cuesta, U. Levy, A. Kristensen, “Plasmonic V-groove waveguides with Bragg grating filters via nanoimprint lithography,” Opt. Express 20(5), 5696–5706 (2012). [CrossRef] [PubMed]
  20. J. Jin, The Finite Element Method in Electromagnetics, (Wiley-IEEE, 2002).
  21. “We employ CST Microwave Studio, with material parameters for metals from P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
  22. The transmitted field intensity is defined as the normalized magnitude of the time-averaged Poynting vector (extracted from simulation), averaged over the distal end of the wire.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited