OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 5 — Mar. 10, 2014
  • pp: 5252–5259

Electro-optic light modulation and THz generation in locally plasma-activated silicon nanophotonic devices

Christopher Matheisen, Michael Waldow, Bartos Chmielak, Simon Sawallich, Thorsten Wahlbrink, Jens Bolten, Michael Nagel, and Heinrich Kurz  »View Author Affiliations

Optics Express, Vol. 22, Issue 5, pp. 5252-5259 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1342 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Silicon is not an electro-optic material by itself but the required second-order optical nonlinearity can be induced by breaking the inversion symmetry of the crystal lattice. Recently, an attractive approach has been demonstrated based on a surface-activation in a CMOS-compatible HBr dry etching process. In this work, we further investigate and quantify the second-order nonlinearity induced by this process. Using THz near-field probing we demonstrate that this simple and versatile process can be applied to locally equip silicon nanophotonic chips with micro-scale areas of electro-optic activity. The realization of a first fully integrated Mach-Zehnder modulator device – based on this process – is applied to quantify the nonlinearity to an effective χ(2) of 9 ± 1 pm/V. Analysis of the thermal stability of the induced nonlinearity reveals post-processing limitations and paths for further efficiency improvements.

© 2014 Optical Society of America

OCIS Codes
(130.0130) Integrated optics : Integrated optics
(160.2100) Materials : Electro-optical materials
(190.0190) Nonlinear optics : Nonlinear optics
(250.7360) Optoelectronics : Waveguide modulators
(190.4223) Nonlinear optics : Nonlinear wave mixing
(110.6795) Imaging systems : Terahertz imaging

ToC Category:

Original Manuscript: December 18, 2013
Revised Manuscript: February 13, 2014
Manuscript Accepted: February 17, 2014
Published: February 27, 2014

Christopher Matheisen, Michael Waldow, Bartos Chmielak, Simon Sawallich, Thorsten Wahlbrink, Jens Bolten, Michael Nagel, and Heinrich Kurz, "Electro-optic light modulation and THz generation in locally plasma-activated silicon nanophotonic devices," Opt. Express 22, 5252-5259 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. Reed, G. Mashanovich, F. Gardes, D. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010). [CrossRef]
  2. C. Schriever, C. Bohley, J. Schilling, R. B. Wehrspohn, “Strained silicon photonics,” Materials 5(12), 889–908 (2012). [CrossRef]
  3. R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441(7090), 199–202 (2006). [CrossRef] [PubMed]
  4. J. Fage-Pedersen, L. H. Frandsen, A. V. Lavrinenko, P. I. Borel, “A linear electro-optic effect in silicon, induced by use of strain,” in 3rd IEEE International Conference on Group IV Photonics, 37–39 (2006).
  5. C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3(4), 216–219 (2009). [CrossRef]
  6. T. Baehr-Jones, M. Hochberg, R. Soref, A. Scherer, “Design of a tunable, room temperature, continuous-wave terahertz source and detector using silicon waveguides,” J. Opt. Soc. Am. B 25(2), 261–268 (2008). [CrossRef]
  7. M. Gould, T. Baehr-Jones, R. Ding, S. Huang, J. Luo, A. K.-Y. Jen, J.-M. Fedeli, M. Fournier, M. Hochberg, “Silicon-polymer hybrid slot waveguide ring-resonator modulator,” Opt. Express 19(5), 3952–3961 (2011). [CrossRef] [PubMed]
  8. R. Palmer, L. Alloatti, D. Korn, P. C. Schindler, R. Schmogrow, M. Baier, S. Koenig, D. Hillerkuss, J. Bolten, T. Wahlbrink, M. Waldow, R. Dinu, W. Freude, C. Koos, and J. Leuthold, “Silicon-Organic Hybrid (SOH) Modulator Generating up to 84 Gbit/s BPSK and M-ASK Signals,“ in Optical Fiber Communication Conference, Novel Modulators (Optical Society of America, 2013), paper OW4J.6. [CrossRef]
  9. S. Abel, T. Stöferle, C. Marchiori, C. Rossel, M. D. Rossell, R. Erni, D. Caimi, M. Sousa, A. Chelnokov, B. J. Offrein, J. Fompeyrine, “A strong electro-optically active lead-free ferroelectric integrated on silicon,” Nat Commun 4, 1671 (2013). [CrossRef] [PubMed]
  10. M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater. 11(2), 148–154 (2011). [CrossRef] [PubMed]
  11. B. Chmielak, M. Waldow, C. Matheisen, C. Ripperda, J. Bolten, T. Wahlbrink, M. Nagel, F. Merget, H. Kurz, “Pockels effect based fully integrated, strained silicon electro-optic modulator,” Opt. Express 19(18), 17212–17219 (2011). [CrossRef] [PubMed]
  12. B. Chmielak, C. Matheisen, C. Ripperda, J. Bolten, T. Wahlbrink, M. Waldow, H. Kurz, “Investigation of local strain distribution and linear electro-optic effect in strained silicon waveguides,” Opt. Express 21(21), 25324–25332 (2013). [CrossRef] [PubMed]
  13. M. Wächter, C. Matheisen, M. Waldow, T. Wahlbrink, J. Bolten, M. Nagel, H. Kurz, “Optical generation of terahertz and second-harmonic light in plasma-activated silicon nanophotonic structures,” Appl. Phys. Lett. 97(16), 161107 (2010). [CrossRef]
  14. T. Wahlbrink, T. Mollenhauer, Y. M. Georgieva, W. Henschel, J. Efavi, H. Gottlob, M. Lemme, H. Kurz, J. Niehusmann, P. Haring Bolivar, “Highly selective etch process for silicon-on-insulator nano-devices,” Microel. Eng. 78–79, 212–217 (2005). [CrossRef]
  15. M. Wächter, M. Nagel, H. Kurz, “Tapered photoconductive terahertz field probe tip with subwavelength spatial resolution,” Appl. Phys. Lett. 95(4), 041112 (2009). [CrossRef]
  16. Y. J. Ding, “Quasi-single-cycle terahertz pulses based on broadband-phase-matched difference-frequency generation in second-order nonlinear medium: High output powers and conversion efficiencies,” IEEE J. Sel. Top. Quantum Electron. 10(5), 1171–1179 (2004). [CrossRef]
  17. N. K. Hon, K. K. Tsia, D. R. Solli, B. Jalali, “Periodically poled silicon,” Appl. Phys. Lett. 94(9), 091116 (2009). [CrossRef]
  18. M. C. Flowers, N. B. H. Jonathan, Y. Liu, A. Morris, “Temperature programmed desorption from the Si(100): Br and Si(100): D/Br surfaces: theory and experiment,” Surf. Sci. 343(1-2), 133–147 (1995). [CrossRef]
  19. R. B. Jackman, R. J. Price, J. S. Foord, “Semiconductor surface etching by halogens: Fundamental steps,” Appl. Surf. Sci. 36(1-4), 296–312 (1989). [CrossRef]
  20. T. Shirao, K. Shudo, Y. Tanaka, T. Nakajima, T. Ishikawa, M. Tanaka, “Thermal desorption process of bromide on Si(111) studied by highly sensitive mass spectroscopy,” Jpn. J. Appl. Phys. 42(Part 1, No. 2A), 593–596 (2003). [CrossRef]
  21. W. Kern, D. Puotinen, “Cleaning solutions based on hydrogen peroxide for use in silicon semiconductor technology,” RCA Rev. 31, 187 (1970).
  22. H. Aizawa, S. Tsuneyuki, T. Ogitsu, “Population analysis study of etching processes at Si(100) surfaces with adsorbed halogens and hydrogens,” Surf. Sci. 438(1-3), 18–25 (1999). [CrossRef]
  23. Q. Lin, O. J. Painter, G. P. Agrawal, “Nonlinear optical phenomena in silicon waveguides: Modeling and applications,” Opt. Express 15(25), 16604–16644 (2007). [CrossRef] [PubMed]
  24. J. T. Robinson, K. Preston, O. Painter, M. Lipson, “First-principle derivation of gain in high-index-contrast waveguides,” Opt. Express 16(21), 16659–16669 (2008). [CrossRef] [PubMed]
  25. A. Aleali, D. Xu, J. H. Schmid, P. Cheben, and W. N. Ye, “Optimization of stress-induced pockels effect in silicon waveguides for optical modulators,” in 10th IEEE International Conference on Group IV Photonics, 109–110 (2013). [CrossRef]
  26. W. Luo, W. Guo, F. Xu, Y.-Q. Lu, “Efficient surface second-harmonic generation in slot micro/nano-fibers,” Opt. Express 21(9), 11554–11561 (2013). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

Supplementary Material

» Media 1: AVI (18594 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited