OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 5 — Mar. 10, 2014
  • pp: 5270–5276

Bragg grating writing in PMMA microstructured polymer optical fibers in less than 7 minutes

Ivan-Lazar Bundalo, Kristian Nielsen, Christos Markos, and Ole Bang  »View Author Affiliations


Optics Express, Vol. 22, Issue 5, pp. 5270-5276 (2014)
http://dx.doi.org/10.1364/OE.22.005270


View Full Text Article

Enhanced HTML    Acrobat PDF (2467 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate fiber Bragg grating (FBG) writing in PMMA microstructured Polymer Optical Fibers (mPOFs) using UV Phase Mask technique with writing times shorter than 10 min. The shortest writing time was 6 minutes and 50 seconds and the longest writing time was 8 min and 50 sec. The FBGs were written in a 125 µm PMMA mPOF having 3-rings of holes, the reflection peaks were centred at 632.6 nm and have a reflectivity as high as 26 dB. We also demonstrate how the writing dynamics depends on the intensity of the writing beam.

© 2014 Optical Society of America

OCIS Codes
(060.2270) Fiber optics and optical communications : Fiber characterization
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(160.5470) Materials : Polymers
(350.2770) Other areas of optics : Gratings
(060.3735) Fiber optics and optical communications : Fiber Bragg gratings
(060.4005) Fiber optics and optical communications : Microstructured fibers

ToC Category:
Fiber Optics

History
Original Manuscript: December 23, 2013
Revised Manuscript: February 12, 2014
Manuscript Accepted: February 14, 2014
Published: February 27, 2014

Citation
Ivan-Lazar Bundalo, Kristian Nielsen, Christos Markos, and Ole Bang, "Bragg grating writing in PMMA microstructured polymer optical fibers in less than 7 minutes," Opt. Express 22, 5270-5276 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-5-5270


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997). [CrossRef]
  2. K. O. Hill, G. Meltz, “Fiber Bragg grating technology - fundamentals and overview,” J. Lightwave Technol. 15(8), 1263–1276 (1997). [CrossRef]
  3. A. Stefani, M. Stecher, G. E. Town, O. Bang, “Direct writing of fiber Bragg grating in microstructured polymer optical fiber,” IEEE Photonics Technol. Lett. 24(13), 1148–1150 (2012). [CrossRef]
  4. Z. Xiong, G. D. Peng, B. Wu, P. L. Chu, “Highly tunable Bragg gratings in single-mode polymer optical fibers,” IEEE Photonics Technol. Lett. 11(3), 352–354 (1999). [CrossRef]
  5. H. Y. Liu, H. B. Liu, G. D. Peng, P. L. Chu, “Observation of type I and type II gratings behavior in polymer optical fiber,” Opt. Commun. 220(4–6), 337–343 (2003). [CrossRef]
  6. H. Dobb, D. J. Webb, K. Kalli, A. Argyros, M. C. Large, M. A. van Eijkelenborg, “Continuous wave ultraviolet light-induced fiber Bragg gratings in few- and single-mode microstructured polymer optical fibers,” Opt. Lett. 30(24), 3296–3298 (2005). [CrossRef] [PubMed]
  7. G. Statkiewicz-Barabach, K. Tarnowski, D. Kowal, P. Mergo, W. Urbanczyk, “Fabrication of multiple Bragg gratings in microstructured polymer fibers using a phase mask with several diffraction orders,” Opt. Express 21(7), 8521–8534 (2013). [CrossRef] [PubMed]
  8. A. Stefani, W. Yuan, C. Markos, O. Bang, “Narrow bandwidth 850-nm fiber Bragg gratings in few-mode polymer optical fibers,” IEEE Photonics Technol. Lett. 23(10), 660–662 (2011). [CrossRef]
  9. W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011). [CrossRef]
  10. A. Cusano, A. Cutolo, and J. Albert, eds., Fiber Bragg Grating Sensors: Recent Advancements, Industrial Applications and Market Exploitation (Bentham Science, 2009), Chap. 15.
  11. A. Dupuis, N. Guo, Y. Gao, N. Godbout, S. Lacroix, C. Dubois, M. Skorobogatiy, “Prospective for biodegradable microstructured optical fibers,” Opt. Lett. 32(2), 109–111 (2007). [CrossRef] [PubMed]
  12. S. H. Law, M. A. van Eijkelenborg, G. W. Barton, C. Yan, R. Lwin, J. Gan, “Cleaved end-face quality of microstructured polymer optical fibres,” Opt. Commun. 265(2), 513–520 (2006). [CrossRef]
  13. S. Law, G. Barton, M. van Eijkelenborg, C. Yan, R. Lwin, and J. Gan, “The effect of fabrication parameters on the cleaving of microstructured polymer optical fibers,” in Proceedings of SPIE The International Society for Optical Engineering, 62890D (2006). [CrossRef]
  14. M. C. J. Large, G. W. Barton, L. Poladian, and M. A. van Eijkelenborg, Microstructured Polymer Optical Fibres (Springer, 2007).
  15. A. Stefani, S. Andresen, W. Yuan, O. Bang, “Dynamic characterization of polymer optical fibers,” IEEE Sens. J. 12(10), 3047–3053 (2012).
  16. W. Yuan, L. Khan, D. J. Webb, K. Kalli, H. K. Rasmussen, A. Stefani, O. Bang, “Humidity insensitive TOPAS polymer fiber Bragg grating sensor,” Opt. Express 19(20), 19731–19739 (2011). [CrossRef] [PubMed]
  17. I. P. Johnson, W. Yuan, A. Stefani, K. Nielsen, H. K. Rasmussen, L. Khan, D. J. Webb, K. Kalli, O. Bang, “Optical fibre Bragg grating recorded in TOPAS cyclic olefin copolymer,” Electron. Lett. 47(4), 271–272 (2011). [CrossRef]
  18. C. Markos, A. Stefani, K. Nielsen, H. K. Rasmussen, W. Yuan, O. Bang, “High-Tg TOPAS microstructured polymer optical fiber for fiber Bragg grating strain sensing at 110 degrees,” Opt. Express 21(4), 4758–4765 (2013). [CrossRef] [PubMed]
  19. A. Stefani, S. Andresen, W. Yuan, N. Herholdt-Rasmussen, O. Bang, “High sensitivity polymer optical fiber-Bragg-grating-based accelerometer,” IEEE Photonics Technol. Lett. 24(9), 763–765 (2012).
  20. C. A. F. Marques, L. B. Bilro, N. J. Alberto, D. J. Webb, R. N. Nogueira, “Narrow bandwidth Bragg gratings imprinted in polymer optical fibers for different spectral windows,” Opt. Commun. 307, 57–61 (2013). [CrossRef]
  21. D. J. Webb, K. Kalli, C. Zhang, M. Komodromos, A. Argyros, M. Large, G. Emiliyanov, O. Bang, E. Kjaer, “Temperature sensitivity of Bragg gratings in PMMA and TOPAS microstructured polymer optical fibres,” Proc. SPIE 6990, 69900L (2008). [CrossRef]
  22. D. Sáez-Rodríguez, K. Nielsen, H. K. Rasmussen, O. Bang, D. J. Webb, “Highly photosensitive polymethyl methacrylate microstructured polymer optical fiber with doped core,” Opt. Lett. 38(19), 3769–3772 (2013). [CrossRef] [PubMed]
  23. G. D. Marshall, D. J. Kan, A. A. Asatryan, L. C. Botten, M. J. Withford, “Transverse coupling to the core of a photonic crystal fiber: the photo-inscription of gratings,” Opt. Express 15(12), 7876–7887 (2007). [CrossRef] [PubMed]
  24. A. Stefani, K. Nielsen, H. K. Rasmussen, O. Bang, “Cleaving of TOPAS and PMMA microstructured polymer optical fibers: Core-shift and statistical quality optimization,” Opt. Commun. 285(7), 1825–1833 (2012). [CrossRef]
  25. T. A. Birks, J. C. Knight, P. S. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22(13), 961–963 (1997). [CrossRef] [PubMed]
  26. W. Yuan, A. Stefani, O. Bang, “Tunable polymer fiber Bragg grating (FBG) inscription: fabrication of dual-FBG temperature compensated polymer optical fiber strain sensors,” IEEE Photonics Technol. Lett. 24(5), 401–403 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited