OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 5 — Mar. 10, 2014
  • pp: 5291–5298

Nonlinear properties of AlGaAs waveguides in continuous wave operation regime

C. Lacava, V. Pusino, P. Minzioni, M. Sorel, and I. Cristiani  »View Author Affiliations

Optics Express, Vol. 22, Issue 5, pp. 5291-5298 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (2678 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Aluminum Gallium Arsenide (AlGaAs) is an attractive platform for the development of integrated optical circuits for all-optical signal processing thanks to its large nonlinear coefficients in the 1.55-μm telecommunication spectral region. In this paper we discuss the results of the nonlinear continuous-wave optical characterization of AlGaAs waveguides at a wavelength of 1.55 μm. We also report the highest value ever reported in the literature for the real part of the nonlinear coefficient in this material (Re(γ) ≈521 W−1m−1).

© 2014 Optical Society of America

OCIS Codes
(130.0130) Integrated optics : Integrated optics
(130.4310) Integrated optics : Nonlinear
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing

ToC Category:
Integrated Optics

Original Manuscript: January 7, 2014
Revised Manuscript: January 24, 2014
Manuscript Accepted: January 26, 2014
Published: February 27, 2014

C. Lacava, V. Pusino, P. Minzioni, M. Sorel, and I. Cristiani, "Nonlinear properties of AlGaAs waveguides in continuous wave operation regime," Opt. Express 22, 5291-5298 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B. Jalali, F. Sasan, “Silicon photonics,” J. Lightwave Technol. 24(12), 4600–4615 (2006). [CrossRef]
  2. H. K. Tsang, Y. Liu, “Nonlinear optical properties of silicon waveguides,” Semicond. Sci. Technol. 23(6), 064007 (2008). [CrossRef]
  3. J. U. Kang, G. I. Stegeman, J. S. Aitchison, “One-dimensional spatial soliton dragging, trapping, and all-optical switching in AlGaAs waveguides,” Opt. Lett. 21(3), 189–191 (1996). [CrossRef] [PubMed]
  4. J. S. Aitchison, D. C. Hutchings, J. U. Kang, G. I. Stegeman, A. Villeneuve, “The nonlinear optical properties of AlGaAs at the half band gap,” IEEE J. Quantum Electron. 33(3), 341–348 (1997). [CrossRef]
  5. K. Dolgaleva, W. C. Ng, L. Qian, J. S. Aitchison, “Compact highly-nonlinear AlGaAs waveguides for efficient wavelength conversion,” Opt. Express 19(13), 12440–12455 (2011). [CrossRef] [PubMed]
  6. J. J. Wathen, P. Apiratikul, B. M. Cannon, T. Mahmood, W. Astar, C. J. K. Richardson, G. Porkolab, G. M. Carter, and T. E. Murphy, “Efficient Continuous-Wave Four-Wave Mixing and Self-Phase Modulation in a Bandgap-Engineered AlGaAs Waveguide,”in Conf. Lasers Electro-Optics 2012 of OSA Technical Digest (Optical Society of America, 2012), paper CW1A.4 (2012).
  7. W. Astar, P. Apiratikul, B. M. Cannon, T. Mahmood, J. J. Wathen, J. V. Hryniewicz, S. Kanakaraju, C. J. K. Richardson, T. E. Murphy, G. M. Carter, “Conversion of RZ-OOK to RZ-BPSK by XPM in a Passive AlGaAs Waveguide,” IEEE Photon. Technol. Lett. 23(19), 1397–1399 (2011). [CrossRef]
  8. K. Dolgaleva, W. C. Ng, L. Qian, J. S. Aitchison, M. C. Camasta, M. Sorel, “Broadband self-phase modulation, cross-phase modulation, and four-wave mixing in 9-mm-long AlGaAs waveguides,” Opt. Lett. 35(24), 4093–4095 (2010). [CrossRef] [PubMed]
  9. D. Duchesne, R. Morandotti, G. A. Siviloglou, G. El, G. I. Stegeman, D. N. Christodoulides, D. Modotto, A. Locatelli, C. De Angelis, F. Pozzi, and M. Sorel, “Nonlinear photonics in AlGaAs photonics nanowires: self phase and cross phase modulation,” in Proceedings of International Symposium on Signals, Systems and Electronics, 2007. ISSSE '07 475–478 (2007). [CrossRef]
  10. G. A. Siviloglou, S. Suntsov, R. El-Ganainy, R. Iwanow, G. I. Stegeman, D. N. Christodoulides, R. Morandotti, D. Modotto, A. Locatelli, C. De Angelis, F. Pozzi, C. R. Stanley, M. Sorel, “Enhanced third-order nonlinear effects in optical AlGaAs nanowires,” Opt. Express 14(20), 9377–9384 (2006). [CrossRef] [PubMed]
  11. C. Lee, M. Wu, G. S. Lih, P. L. Fan, H. Jui-Ming, “Design and analysis of completely adiabatic tapered waveguides by conformal mapping,” J. Lightwave Technol. 15(2), 403–410 (1997). [CrossRef]
  12. S. J. Pearton, U. K. Chakrabarti, W. S. Hobson, A. P. Kinsella, “Reactive ion etching of GaAs, AlGaAs, and GaSb in Cl2 and SiCl4,” J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. 8, 607–617 (1990).
  13. T. Barwicz, H. A. Haus, “Three-dimensional analysis of scattering losses due to sidewall roughness in microphotonic waveguides,” J. Lightwave Technol. 23(9), 2719–2732 (2005). [CrossRef]
  14. L. Caspani, D. Duchesne, K. Dolgaleva, S. J. Wagner, M. Ferrera, L. Razzari, A. Pasquazi, M. Peccianti, D. J. Moss, J. S. Aitchison, R. Morandotti, “Optical frequency conversion in integrated devices,” J. Opt. Soc. Am. B 28(12), A67 (2011). [CrossRef]
  15. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2001)
  16. I. D. Rukhlenko, M. Premaratne, G. P. Agrawal, “Effective mode area and its optimization in silicon-nanocrystal waveguides,” Opt. Lett. 37(12), 2295–2297 (2012). [CrossRef] [PubMed]
  17. Y. Shoji, T. Ogasawara, T. Kamei, Y. Sakakibara, S. Suda, K. Kintaka, H. Kawashima, M. Okano, T. Hasama, H. Ishikawa, M. Mori, “Ultrafast nonlinear effects in hydrogenated amorphous silicon wire waveguide,” Opt. Express 18(6), 5668–5673 (2010). [CrossRef] [PubMed]
  18. M. Foster, K. Moll, A. Gaeta, “Optimal waveguide dimensions for nonlinear interactions,” Opt. Express 12(13), 2880–2887 (2004). [CrossRef] [PubMed]
  19. K. Inoue, H. Oda, N. Ikeda, K. Asakawa, “Enhanced third-order nonlinear effects in slow-light photonic-crystal slab waveguides of line-defect,” Opt. Express 17(9), 7206–7216 (2009). [CrossRef] [PubMed]
  20. A. Trita, C. Lacava, P. Minzioni, J. P. Colonna, P. Gautier, J. M. Fedeli, I. Cristiani, “Ultra-high four wave mixing efficiency in slot waveguides with silicon nanocrystals,” Appl. Phys. Lett. 99(19), 191105 (2011). [CrossRef]
  21. R. Ahmad, M. Rochette, “High efficiency and ultra broadband optical parametric four-wave mixing in chalcogenide-PMMA hybrid microwires,” Opt. Express 20(9), 9572–9580 (2012). [CrossRef] [PubMed]
  22. V. Eckhouse, I. Cestier, G. Eisenstein, S. Combrié, P. Colman, A. De Rossi, M. Santagiustina, C. G. Someda, G. Vadalà, “Highly efficient four wave mixing in GaInP photonic crystal waveguides,” Opt. Lett. 35(9), 1440–1442 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited