OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 5 — Mar. 10, 2014
  • pp: 5312–5324

Monte Carlo modeling of the dual-mode regime in quantum-well and quantum-dot semiconductor lasers

Laurent Chusseau, Fabrice Philippe, and Filippo Disanto  »View Author Affiliations


Optics Express, Vol. 22, Issue 5, pp. 5312-5324 (2014)
http://dx.doi.org/10.1364/OE.22.005312


View Full Text Article

Enhanced HTML    Acrobat PDF (1587 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Monte Carlo markovian models of a dual-mode semiconductor laser with quantum well (QW) or quantum dot (QD) active regions are proposed. Accounting for carriers and photons as particles that may exchange energy in the course of time allows an ab initio description of laser dynamics such as the mode competition and intrinsic laser noise. We used these models to evaluate the stability of the dual-mode regime when laser characteristics are varied: mode gains and losses, non-radiative recombination rates, intraband relaxation time, capture time in QD, transfer of excitation between QD via the wetting layer... As a major result, a possible steady-state dual-mode regime is predicted for specially designed QD semiconductor lasers thereby acting as a CW microwave or terahertz-beating source whereas it does not occur for QW lasers.

© 2014 Optical Society of America

OCIS Codes
(140.3430) Lasers and laser optics : Laser theory
(140.5960) Lasers and laser optics : Semiconductor lasers
(270.2500) Quantum optics : Fluctuations, relaxations, and noise
(250.5590) Optoelectronics : Quantum-well, -wire and -dot devices

ToC Category:
Optical Devices

History
Original Manuscript: January 17, 2014
Revised Manuscript: February 18, 2014
Manuscript Accepted: February 21, 2014
Published: February 28, 2014

Virtual Issues
Physics and Applications of Laser Dynamics (2014) Optics Express

Citation
Laurent Chusseau, Fabrice Philippe, and Filippo Disanto, "Monte Carlo modeling of the dual-mode regime in quantum-well and quantum-dot semiconductor lasers," Opt. Express 22, 5312-5324 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-5-5312


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Tonouchi, “Cutting-edge terahertz technology,” Nature Photonics 1, 97–105 (2007). [CrossRef]
  2. N. Kim, J. Shin, E. Sim, C. W. Lee, D.-S. Yee, M. Y. Jeon, Y. Jang, K. H. Park, “Monolithic dual-mode distributed feedback semiconductor laser for tunable continuous-wave terahertz generation,” Opt. Express 17, 13851–13859 (2009). [CrossRef] [PubMed]
  3. M. R. H. Khan, E. H. Bernhardi, D. A. I. Marpaung, M. Burla, R. M. de Ridder, K. Wörhoff, M. Pollnau, C. G. H. Roeloffzen, “Dual-frequency distributed feedback laser with optical frequency locked loop for stable microwave signal generation,” IEEE Photon. Technol. Lett. 24, 1431–1433 (2012). [CrossRef]
  4. M. Brunner, K. Gulden, R. Hovel, M. Moser, J. F. Carlin, R. P. Stanley, M. Ilegems, “Continuous-wave dual-wavelength lasing in a two-section vertical-cavity laser,” IEEE Photon Technol. Lett. 12, 1316–1318 (2000). [CrossRef]
  5. M. Tani, P. Gu, M. Hyodo, K. Sakai, T. Hidaka, “Generation of coherent terahertz radiation by photomixing of dual-mode lasers,” Optical and Quantum Electronics 32, 503–520 (2000). [CrossRef]
  6. P. Pellandini, R. P. Stanley, R. Houdre, U. Oesterle, M. Ilegems, C. Weisbuch, “Dual-wavelength laser emission from a coupled semiconductor microcavity,” Appl. Phys. Lett. 71, 864–866 (1997). [CrossRef]
  7. L. Chusseau, G. Almuneau, L. A. Coldren, A. Huntington, D. Gasquet, “Coupled-cavity vertical-emitting semiconductor-laser for continous-wave terahertz emission,” IEE Proc. J 149, 88–92 (2002).
  8. M. Sargent, M. O. Scully, W. Lamb, Laser Physics (Addison-Wesley Publishing Company, 1974).
  9. J. Albert, G. Van der Sande, B. Nagler, K. Panajotov, I. Veretennicoff, J. Danckaert, T. Erneux, “The effects of nonlinear gain on the stability of semi-degenerate two-mode semiconductor lasers: a case study on VCSELs,” Opt. Commun. 248, 527–534 (2005). [CrossRef]
  10. L. Chusseau, F. Philippe, P. Viktorovitch, X. Letartre, “Mode competition in dual-mode quantum dots semiconductor microlaser,” Phys. Rev. A 88, 015803 (2013). [CrossRef]
  11. M. Sugawara, K. Mukai, Y. Nakata, H. Ishikawa, A. Sakamoto, “Effect of homogeneous broadening of optical gain on lasing spectra in self-assembled Inx Ga1−x As/GaAs quantum dot lasers,” Phys. Rev. B 61, 7595–7603 (2000). [CrossRef]
  12. A. Markus, J. X. Chen, C. Paranthoën, A. Fiore, C. Platz, O. Gauthier-Lafaye, “Simultaneous two-state lasing in quantum-dot lasers,” Appl. Phys. Lett. 82, 1818–1820 (2003). [CrossRef]
  13. F. Grillot, N. A. Naderi, J. B. Wright, R. Raghunathan, M. T. Crowley, L. F. Lester, “A dual-mode quantum dot laser operating in the excited state,” Appl. Phys. Lett. 99, 231110 (2011). [CrossRef]
  14. K. Kusiaku, J.-L. Leclercq, P. Regreny, P. Rojo-Romeo, C. Seassal, P. Viktorovitch, X. Letartre, L. Chusseau, F. Disanto, F. Philippe, E. Augendre, “Dual-wavelength laser for THz generation by photo-mixing,” in “Proceedings of SPIE – Photonics Europe,”, vol. 8425 (Bruxelles, 2012), vol. 8425, p. 84250H.
  15. J. L. Guisado, F. Jiménez-Morales, J. M. Guerra, “Cellular automaton model for the simulation of laser dynamics,” Phys. Rev. E 67, 066708 (2003). [CrossRef]
  16. A. M. Yacomotti, L. Furfaro, X. Hachair, F. Pedaci, M. Giudici, J. Tredicce, J. Javaloyes, S. Balle, E. A. Viktorov, P. Mandel, “Dynamics of multimode semiconductor lasers,” Phys. Rev. A 69, 053816 (2004). [CrossRef]
  17. C. Serrat, C. Masoller, “Modeling spatial effects in multi-longitudinal-mode semiconductor lasers,” Phys. Rev. A 73, 043812 (2006). [CrossRef]
  18. L. Chusseau, J. Arnaud, “Monte-Carlo simulation of laser diodes sub-poissonian light generation,” Opt. Quant. Electron. 34, 1007–1023 (2002). [CrossRef]
  19. L. Chusseau, J. Arnaud, F. Philippe, “Rate-equation approach to atomic laser light statistics,” Phys. Rev. A 66, 053818 (2002). [CrossRef]
  20. D. T. Gillespie, Markov Processes: An Introduction for Physical Scientists (Academic Press, 1992).
  21. M. Ahmed, M. Yamada, “Influence of instantaneous mode competition on the dynamics of semiconductor lasers,” IEEE J. Quantum Electron. 38, 682–693 (2002). [CrossRef]
  22. D. Gammon, E. S. Snow, B. V. Shanabrook, D. S. Katzer, D. Park, “Homogeneous linewidths in the optical spectrum of a single gallium arsenide quantum dot,” Science 273, 87–90 (1996). [CrossRef] [PubMed]
  23. M. Gendry, C. Monat, J. Brault, P. Regreny, G. Hollinger, B. Salem, G. Guillot, T. Benyattou, C. Bru-Chevalier, G. Bremond, O. Marty, “From large to low heigth dispersion for self-organised InAs quantum sticks emitting at 1.55 μm on InP (001),” J. Appl. Phys. 95, 4761–4766 (2004). [CrossRef]
  24. W. Ouerghui, A. Melliti, M. A. Maarel, J. Bloch, “Dependence on temperature of homogeneous broadening of InGaAs/InAs/GaAs quantum dot fundamental transitions,” Physica E 28, 519–524 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited