OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 5 — Mar. 10, 2014
  • pp: 5400–5409

An intracavity, frequency-doubled self-Raman vortex laser

Andrew J. Lee, Chunyu Zhang, Takashige Omatsu, and Helen M. Pask  »View Author Affiliations


Optics Express, Vol. 22, Issue 5, pp. 5400-5409 (2014)
http://dx.doi.org/10.1364/OE.22.005400


View Full Text Article

Enhanced HTML    Acrobat PDF (1748 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate intracavity frequency doubling of the self-Raman field generated within a diode end-pumped, solid state Nd:GdVO4 vortex laser. A maximum output power of 727 mW is generated at 586 nm with an overall diode-to-yellow conversion efficiency of 4%. Conservation of orbital angular momentum is observed under intracavity frequency doubling, with the topological charge of the yellow beam being twice that of the Stokes beam.

© 2014 Optical Society of America

OCIS Codes
(140.3300) Lasers and laser optics : Laser beam shaping
(140.3480) Lasers and laser optics : Lasers, diode-pumped
(140.3550) Lasers and laser optics : Lasers, Raman
(190.2620) Nonlinear optics : Harmonic generation and mixing
(190.5650) Nonlinear optics : Raman effect

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: January 3, 2014
Revised Manuscript: February 18, 2014
Manuscript Accepted: February 18, 2014
Published: February 28, 2014

Citation
Andrew J. Lee, Chunyu Zhang, Takashige Omatsu, and Helen M. Pask, "An intracavity, frequency-doubled self-Raman vortex laser," Opt. Express 22, 5400-5409 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-5-5400


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003). [CrossRef] [PubMed]
  2. S. W. Hell, J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett. 19(11), 780–782 (1994). [CrossRef] [PubMed]
  3. S. Franke-Arnold, L. Allen, M. Padgett, “Advances in optical angular momentum,” Laser Photonics Rev. 2(4), 299–313 (2008). [CrossRef]
  4. K. Toyoda, K. Miyamoto, N. Aoki, R. Morita, T. Omatsu, “Using optical vortex to control the chirality of twisted metal nanostructures,” Nano Lett. 12(7), 3645–3649 (2012). [CrossRef] [PubMed]
  5. T. Omatsu, K. Chujo, K. Miyamoto, M. Okida, K. Nakamura, N. Aoki, R. Morita, “Metal microneedle fabrication using twisted light with spin,” Opt. Express 18(17), 17967–17973 (2010). [CrossRef] [PubMed]
  6. J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, A. E. Wilner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012). [CrossRef]
  7. I. M. Fazal, N. Ahmed, J. Wang, J.-Y. Yang, Y. Yan, B. Shamee, H. Huang, Y. Yue, S. Dolinar, M. Tur, A. E. Willner, “2 Tbit/s free-space data transmission on two orthogonal orbital-angular-momentum beams each carrying 25 WDM channels,” Opt. Lett. 37(22), 4753–4755 (2012). [CrossRef] [PubMed]
  8. N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013). [CrossRef] [PubMed]
  9. V. V. Kotlyar, A. A. Almazov, S. N. Khonina, V. A. Soifer, H. Elfstrom, J. Turunen, “Generation of phase singularity through diffracting a plane or Gaussian beam by a spiral phase plate,” J. Opt. Soc. Am. A 22(5), 849–861 (2005). [CrossRef] [PubMed]
  10. M. W. Beijersbergen, L. Allen, H. E. L. O. van der Veen, J. P. Woerdman, “Astigmatic laser mode converters and transfer of orbital angular momentum,” Opt. Commun. 96(1–3), 123–132 (1993). [CrossRef]
  11. N. Matsumoto, T. Ando, T. Inoue, Y. Ohtake, N. Fukuchi, T. Hara, “Generation of high-quality higher-order Lagurre-Gaussian beams using liquid-crystal-on-silicon spatial light modulators,” J. Opt. Soc. Am. A 25(7), 1642–1651 (2008). [CrossRef]
  12. Y. F. Chen, Y. P. Lan, S. C. Wang, “Generation of Laguerre-Gaussian modes in fiber-coupled laser diode end-pumped lasers,” Appl. Phys. B 72(2), 167–170 (2001). [CrossRef]
  13. A. Ito, Y. Kozawa, S. Sato, “Generation of hollow scalar and vector beams using a spot-defect mirror,” J. Opt. Soc. Am. A 27(9), 2072–2077 (2010). [CrossRef] [PubMed]
  14. K. Kano, Y. Kozawa, S. Sato, “Generation of purely single transverse mode vortex beam from a He-Ne laser cavity with a spot-defect mirror,” Int. J. Opt. 2012, 359141 (2012). [CrossRef]
  15. M. Okida, T. Omatsu, M. Itoh, T. Yatagai, “Direct generation of high power Laguerre-Gaussian output from a diode-pumped Nd:YVO4 1.3-mum bounce laser,” Opt. Express 15(12), 7616–7622 (2007). [CrossRef] [PubMed]
  16. A. J. Lee, T. Omatsu, H. M. Pask, “Direct generation of a first-Stokes vortex laser beam from a self-Raman laser,” Opt. Express 21(10), 12401–12409 (2013). [CrossRef] [PubMed]
  17. M. Padgett, L. Allen, “Light with a twist in its tail,” Contemp. Phys. 41(5), 275–285 (2000). [CrossRef]
  18. K. Dholakia, N. B. Simpson, M. J. Padgett, L. Allen, “Second-harmonic generation and the orbital angular momentum of light,” Phys. Rev. A 54(5), R3742–R3745 (1996). [CrossRef] [PubMed]
  19. M. Martinelli, J. A. O. Huguenin, P. Nussenzveig, A. Z. Khoury, “Orbital angular momentum exchange in an optical parametric oscillator,” Phys. Rev. A 70(1), 013812 (2004). [CrossRef]
  20. K. Miyamoto, S. Miyagi, M. Yamada, K. Furuki, N. Aoki, M. Okida, T. Omatsu, “Optical vortex pumped mid-infrared optical parametric oscillator,” Opt. Express 19(13), 12220–12226 (2011). [CrossRef] [PubMed]
  21. T. Yusufu, Y. Tokizane, M. Yamada, K. Miyamoto, T. Omatsu, “Tunable 2-μm optical vortex parametric oscillator,” Opt. Express 20(21), 23666–23675 (2012). [CrossRef] [PubMed]
  22. H. M. Pask, P. Dekker, R. P. Mildren, D. J. Spence, J. A. Piper, “Wavelength-versatile visible and UV sources based on crystalline Raman lasers,” Prog. Quantum Electron. 32(3-4), 121–158 (2008). [CrossRef]
  23. A. J. Lee, D. J. Spence, J. A. Piper, H. M. Pask, “A wavelength-versatile, continuous-wave, self-Raman solid-state laser operating in the visible,” Opt. Express 18(19), 20013–20018 (2010). [CrossRef] [PubMed]
  24. I. V. Basistiy, M. S. Soskin, M. V. Vasnetsov, “Optical wavefront dislocations and their properties,” Opt. Commun. 119(5-6), 604–612 (1995). [CrossRef]
  25. Lascad-Software for Laser Cavity Analysis and Design, available at www.lac-cad.com .
  26. T. Omatsu, M. Okida, A. J. Lee, H. M. Pask, “Thermal lensing in a diode-end-pumped continuous-wave self-Raman Nd-doped GdVO4 laser,” Appl. Phys. B 108(1), 73–79 (2012). [CrossRef]
  27. J. T. Murray, W. L. Austin, R. C. Powell, “Intracavity Raman conversion and Raman beam cleanup,” Opt. Mater. 11, 353–371 (1999). [CrossRef]
  28. X.-L. Wang, J. Ding, J.-Q. Qin, J. Chen, Y.-X. Fan, H.-T. Wang, “Configurable three-dimensional optical cage generated from cylindrical vector beams,” Opt. Commun. 282(17), 3421–3425 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited