OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 5 — Mar. 10, 2014
  • pp: 5442–5447

Observation of vector- and scalar-pulse in a nanotube-mode-locked fiber laser

Ling Yun, Xueming Liu, and Dongdong Han  »View Author Affiliations


Optics Express, Vol. 22, Issue 5, pp. 5442-5447 (2014)
http://dx.doi.org/10.1364/OE.22.005442


View Full Text Article

Enhanced HTML    Acrobat PDF (1070 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report the experimental observations of vector pulse trapping and scalar dissipative soliton in a compact nanotube-mode-locked all-fiber laser for the first time to our best knowledge. The vector pulse exhibits a smooth Gaussian spectral profile without any sidebands. Although two orthogonally polarized components of the vector pulse have different central wavelengths, they copropagate as a unit in the laser cavity with the same speed. The scalar dissipative soliton shows a rectangular spectrum with pulse duration of ~13 ps, and can be compressed to ~320 fs external to the cavity. This flexible laser provides stable, ultrashort vector- and scalar-pulsed sources, which is convenient and attractive for practical applications.

© 2014 Optical Society of America

OCIS Codes
(060.2410) Fiber optics and optical communications : Fibers, erbium
(140.4050) Lasers and laser optics : Mode-locked lasers
(060.3510) Fiber optics and optical communications : Lasers, fiber

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: January 14, 2014
Revised Manuscript: February 18, 2014
Manuscript Accepted: February 21, 2014
Published: February 28, 2014

Virtual Issues
Vol. 9, Iss. 5 Virtual Journal for Biomedical Optics

Citation
Ling Yun, Xueming Liu, and Dongdong Han, "Observation of vector- and scalar-pulse in a nanotube-mode-locked fiber laser," Opt. Express 22, 5442-5447 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-5-5442


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. Oktem, C. Ulgudur, F. Ilday, “Soliton-similariton fibre laser,” Nat. Photonics 4(5), 307–311 (2010). [CrossRef]
  2. X. M. Liu, “Interaction and motion of solitons in passively-mode-locked fiber lasers,” Phys. Rev. A 84(5), 053828 (2011). [CrossRef]
  3. D. Mao, X. Liu, L. Wang, X. Hu, H. Lu, “Partially polarized wave-breaking-free dissipative soliton with super-broad spectrum in a mode-locked fiber laser,” Laser Phys. Lett. 8(2), 134–138 (2011). [CrossRef]
  4. D. Mao, X. M. Liu, Z. Sun, H. Lu, D. Han, G. Wang, F. Wang, “Flexible high-repetition-rate ultrafast fiber laser,” Sci Rep 3, 3223 (2013). [CrossRef] [PubMed]
  5. C. R. Menyuk, “Stability of solitons in birefringent optical fibers. II. Arbitrary amplitudes,” J. Opt. Soc. Am. B 5(2), 392–402 (1988). [CrossRef]
  6. M. N. Islam, C. D. Poole, J. P. Gordon, “Soliton trapping in birefringent optical fibers,” Opt. Lett. 14(18), 1011–1013 (1989). [CrossRef] [PubMed]
  7. V. V. Afanasjev, “Soliton polarization rotation in fiber lasers,” Opt. Lett. 20(3), 270–272 (1995). [CrossRef] [PubMed]
  8. N. N. Akhmediev, A. V. Buryak, J. M. Soto-Crespo, D. R. Andersen, “Phase locked stationary soliton states in birefringent nonlinear optical fibers,” J. Opt. Soc. Am. B 12(3), 434–439 (1995). [CrossRef]
  9. C. R. Menyuk, “Stability of solitons in birefringent optical fibers. I: Equal propagation amplitudes,” Opt. Lett. 12(8), 614–616 (1987). [CrossRef] [PubMed]
  10. A. E. Korolev, V. N. Nazarov, D. A. Nolan, C. M. Truesdale, “Experimental observation of orthogonally polarized time-delayed optical soliton trapping in birefringent fibers,” Opt. Lett. 30(2), 132–134 (2005). [CrossRef] [PubMed]
  11. D. Mao, X. Liu, H. Lu, “Observation of pulse trapping in a near-zero dispersion regime,” Opt. Lett. 37(13), 2619–2621 (2012). [CrossRef] [PubMed]
  12. V. Tsatourian, S. V. Sergeyev, C. Mou, A. Rozhin, V. Mikhailov, B. Rabin, P. S. Westbrook, S. K. Turitsyn, “Polarisation dynamics of vector soliton molecules in mode locked fibre laser,” Sci Rep 3, 3154 (2013). [CrossRef] [PubMed]
  13. L. Wang, X. Liu, Y. Gong, D. Mao, L. Duan, “Observations of four types of pulses in a fiber laser with large net-normal dispersion,” Opt. Express 19(8), 7616–7624 (2011). [CrossRef] [PubMed]
  14. L. Duan, X. Liu, D. Mao, L. Wang, G. Wang, “Experimental observation of dissipative soliton resonance in an anomalous-dispersion fiber laser,” Opt. Express 20(1), 265–270 (2012). [CrossRef] [PubMed]
  15. L. Yun, X. M. Liu, D. Mao, “Observation of dual-wavelength dissipative solitons in a figure-eight erbium-doped fiber laser,” Opt. Express 20(19), 20992–20997 (2012). [CrossRef] [PubMed]
  16. D. Han, X. M. Liu, “Sideband-controllable mode-locking fiber laser based on chirped fiber Bragg gratings,” Opt. Express 20(24), 27045–27050 (2012). [CrossRef] [PubMed]
  17. X. Liu, “Hysteresis phenomena and multipulse formation of a dissipative system in a passively mode-locked fiber laser,” Phys. Rev. A 81(2), 023811 (2010). [CrossRef]
  18. P. Grelu, N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nat. Photonics 6(2), 84–92 (2012). [CrossRef]
  19. N. Akhmediev and A. Ankiewicz, Solitons Around Us: Integrable, Hamiltonian and Dissipative System (Springer, 2003).
  20. K. Porsezian and V. C. Kuriakose, Optical Solitons: Theoretical and Experimental Challenges (Springer, 2003).
  21. N. N. Akhmediev and A. Ankiewicz, Dissipative Solitons, Vol. 661 of Notes in Physics (Springer, 2005).
  22. X. M. Liu, “Soliton formation and evolution in passively-mode-locked lasers with ultralong anomalous-dispersion fibers,” Phys. Rev. A 84(2), 023835 (2011). [CrossRef]
  23. F. W. Wise, A. Chong, W. H. Renninger, “High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion,” Laser & Photon. Rev. 2(1-2), 58–73 (2008). [CrossRef]
  24. S. Kobtsev, S. Kukarin, S. Smirnov, S. Turitsyn, A. Latkin, “Generation of double-scale femto/pico-second optical lumps in mode-locked fiber lasers,” Opt. Express 17(23), 20707–20713 (2009). [CrossRef] [PubMed]
  25. X. M. Liu, “Dynamic evolution of temporal dissipative-soliton molecules in large normal path-averaged dispersion fiber lasers,” Phys. Rev. A 82(6), 063834 (2010). [CrossRef]
  26. X. Liu, “Mechanism of high-energy pulse generation without wave breaking in mode-locked fiber lasers,” Phys. Rev. A 82(5), 053808 (2010). [CrossRef]
  27. X. Liu, “Pulse evolution without wave breaking in a strongly dissipative-dispersive laser system,” Phys. Rev. A 81(5), 053819 (2010). [CrossRef]
  28. L. R. Wang, X. M. Liu, Y. K. Gong, “Giant-chirp oscillator for ultra-large net-normal-dispersion fiber lasers,” Laser Phys. Lett. 7(1), 63–67 (2010). [CrossRef]
  29. S. V. Smirnov, S. M. Kobtsev, S. V. Kukarin, “Efficiency of non-linear frequency conversion of double-scale pico-femtosecond pulses of passively mode-locked fiber laser,” Opt. Express 22(1), 1058–1064 (2014). [CrossRef] [PubMed]
  30. N. H. Seong, D. Y. Kim, “Experimental observation of stable bound solitons in a figure-eight fiber laser,” Opt. Lett. 27(15), 1321–1323 (2002). [CrossRef] [PubMed]
  31. M. Hoffmann, S. Schilt, T. Südmeyer, “CEO stabilization of a femtosecond laser using a SESAM as fast opto-optical modulator,” Opt. Express 21(24), 30054–30064 (2013). [CrossRef] [PubMed]
  32. D. Mao, X. M. Liu, D. D. Han, H. Lu, “Compact all-fiber laser delivering conventional and dissipative solitons,” Opt. Lett. 38(16), 3190–3193 (2013). [CrossRef] [PubMed]
  33. Z. Sun, A. G. Rozhin, F. Wang, V. Scardaci, W. I. Milne, I. H. White, F. Hennrich, A. C. Ferrari, “L-band ultrafast fiber laser mode locked by carbon nanotubes,” Appl. Phys. Lett. 93(6), 061114 (2008). [CrossRef]
  34. C. Zeng, X. Liu, L. Yun, “Bidirectional fiber soliton laser mode-locked by single-wall carbon nanotubes,” Opt. Express 21(16), 18937–18942 (2013). [CrossRef] [PubMed]
  35. C. Mou, S. Sergeyev, A. Rozhin, S. Turistyn, “All-fiber polarization locked vector soliton laser using carbon nanotubes,” Opt. Lett. 36(19), 3831–3833 (2011). [CrossRef] [PubMed]
  36. Y. S. Fedotov, S. M. Kobtsev, R. N. Arif, A. G. Rozhin, C. Mou, S. K. Turitsyn, “Spectrum-, pulsewidth-, and wavelength-switchable all-fiber mode-locked Yb laser with fiber based birefringent filter,” Opt. Express 20(16), 17797–17805 (2012). [CrossRef] [PubMed]
  37. J. Xu, S. D. Wu, H. H. Li, J. Liu, R. Y. Sun, F. Z. Tan, Q. H. Yang, P. Wang, “Dissipative soliton generation from a graphene oxide mode-locked Er-doped fiber laser,” Opt. Express 20(21), 23653–23658 (2012). [CrossRef] [PubMed]
  38. Y. D. Cui, X. M. Liu, “Graphene and nanotube mode-locked fiber laser emitting dissipative and conventional solitons,” Opt. Express 21(16), 18969–18974 (2013). [CrossRef] [PubMed]
  39. L. M. Zhao, D. Y. Tang, H. Zhang, X. Wu, N. Xiang, “Soliton trapping in fiber lasers,” Opt. Express 16(13), 9528–9533 (2008). [CrossRef] [PubMed]
  40. A. Schmidt, S. Rivier, G. Steinmeyer, J. H. Yim, W. B. Cho, S. Lee, F. Rotermund, M. C. Pujol, X. Mateos, M. Aguiló, F. Díaz, V. Petrov, U. Griebner, “Passive mode locking of Yb:KLuW using a single-walled carbon nanotube saturable absorber,” Opt. Lett. 33(7), 729–731 (2008). [CrossRef] [PubMed]
  41. X. Liu, D. D. Han, Z. P. Sun, C. Zeng, H. Lu, D. Mao, Y. D. Cui, F. Q. Wang, “Versatile multi-wavelength ultrafast fiber laser mode-locked by carbon nanotubes,” Sci Rep 3, 2718 (2013). [PubMed]
  42. J. M. Evans, D. E. Spence, D. Burns, W. Sibbett, “Dual-wavelength self-mode-locked Ti:sapphire laser,” Opt. Lett. 18(13), 1074–1076 (1993). [CrossRef] [PubMed]
  43. X. M. Liu, D. Mao, “Compact all-fiber high-energy fiber laser with sub-300-fs duration,” Opt. Express 18(9), 8847–8852 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited