OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 5 — Mar. 10, 2014
  • pp: 5448–5454

4-λ InGaAsP-Si distributed feedback evanescent lasers with varying silicon waveguide width

Li Tao, Lijun Yuan, Yanping Li, Hongyan Yu, Baojun Wang, Qiang Kan, Weixi Chen, Jiaoqing Pan, Guangzhao Ran, and Wei Wang  »View Author Affiliations


Optics Express, Vol. 22, Issue 5, pp. 5448-5454 (2014)
http://dx.doi.org/10.1364/OE.22.005448


View Full Text Article

Acrobat PDF (2359 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A four-wavelength silicon hybrid laser array operating at room temperature is realized by evanescently coupling the optical gain of InGaAsP multi-quantum wells to the silicon waveguides of varying widths and patterned with distributed feedback gratings based on selective-area metal bonding technology. The lasers have emission peaks between 1539.9 and 1546.1 nm with a wavelength spacing of about 2.0 nm. The single laser has a typical threshold current of 50 mA and side-mode suppression ratio of 20 dB. The silicon waveguides are fabricated simply by standard photolithography and holographic lithography which are CMOS compatible.

© 2014 Optical Society of America

OCIS Codes
(250.0250) Optoelectronics : Optoelectronics
(250.5300) Optoelectronics : Photonic integrated circuits
(250.5960) Optoelectronics : Semiconductor lasers

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: January 16, 2014
Revised Manuscript: February 20, 2014
Manuscript Accepted: February 20, 2014
Published: February 28, 2014

Citation
Li Tao, Lijun Yuan, Yanping Li, Hongyan Yu, Baojun Wang, Qiang Kan, Weixi Chen, Jiaoqing Pan, Guangzhao Ran, and Wei Wang, "4-λ InGaAsP-Si distributed feedback evanescent lasers with varying silicon waveguide width," Opt. Express 22, 5448-5454 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-5-5448


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. D. Liang, J. E. Bowers, “Recent progress in lasers on silicon,” Nat. Photonics 4(8), 511–517 (2010). [CrossRef]
  2. T. Wang, H. Liu, A. Lee, F. Pozzi, A. Seeds, “1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates,” Opt. Express 19(12), 11381–11386 (2011). [CrossRef] [PubMed]
  3. K. Tanabe, K. Watanabe, Y. Arakawa, “III-V/Si hybrid photonic devices by direct fusion bonding,” Sci Rep 2, 349 (2012). [CrossRef] [PubMed]
  4. R. Chen, T. Truong, K. W. Ng, W. S. Ko, L. C. Chuang, F. G. Sedgwick, C. C. Hasnain, “Nanolasers grown on silicon,” Nat. Photonics 5(3), 170–175 (2011). [CrossRef]
  5. A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express 14(20), 9203–9210 (2006). [CrossRef] [PubMed]
  6. H. H. Chang, A. W. Fang, M. N. Sysak, H. Park, R. Jones, O. Cohen, O. Raday, M. J. Paniccia, J. E. Bowers, “1310nm silicon evanescent laser,” Opt. Express 15(18), 11466–11471 (2007). [CrossRef] [PubMed]
  7. A. W. Fang, R. Jones, H. Park, O. Cohen, O. Raday, M. J. Paniccia, J. E. Bowers, “Integrated AlGaInAs-silicon evanescent race track laser and photodetector,” Opt. Express 15(5), 2315–2322 (2007). [CrossRef] [PubMed]
  8. S. Stankovic, R. Jones, M. N. Sysak, J. M. Heck, G. Roelkens, D. V. Thourhout, “1310-nm Hybrid III-V/Si Fabry-Perot Laser Based on Adhesive Bonding,” IEEE Photon. Technol. Lett. 23(23), 1781–1783 (2011). [CrossRef]
  9. S. Stankovic, R. Jones, M. N. Sysak, J. M. Heck, G. Roelkens, D. V. Thourhout, “Hybrid III-V/Si Distributed-Feedback Laser Based on Adhesive Bonding,” IEEE Photon. Technol. Lett. 24(23), 2155–2158 (2012). [CrossRef]
  10. T. Hong, G. Z. Ran, T. Chen, J. Q. Pan, W. X. Chen, Y. Wang, Y. B. Cheng, S. Liang, L. J. Zhao, L. Q. Yin, J. H. Zhang, W. Wang, G. G. Qin, “A selective-Area Metal Bonding InGaAsP-Si Laser,” IEEE Photon. Technol. Lett. 22(15), 1141–1143 (2010). [CrossRef]
  11. T. Hong, Y. P. Li, W. X. Chen, G. Z. Ran, G. G. Qin, H. L. Zhu, S. Liang, Y. Wang, J. J. Pan, W. Wang, “Bonding InGaAsP/ITO/Si hybrid laser with ito as cathode and light-coupling material,” IEEE Photon. Technol. Lett. 24(8), 712–714 (2012). [CrossRef]
  12. L. J. Yuan, L. Tao, H. Y. Yu, W. X. Chen, D. Lu, Y. P. Li, G. Z. Ran, J. Q. Pan, “Hybrid InGaAsP-Si evanescent laser by selective-area metal-bonding method,” IEEE Photon. Technol. Lett. 25(12), 1180–1183 (2013). [CrossRef]
  13. O. Bondarenko, Q. Gu, J. Shane, A. Simic, B. Slutsky, Y. Fainman, “Wafer bonded distributed feedback laser with sidewall modulated Bragg gratings,” Appl. Phys. Lett. 103(4), 043105 (2013). [CrossRef]
  14. A. W. Fang, E. Lively, Y. H. Kuo, D. Liang, J. E. Bowers, “A distributed feedback silicon evanescent laser,” Opt. Express 16(7), 4413–4419 (2008). [CrossRef] [PubMed]
  15. A. W. Fang, B. R. Koch, R. Jones, E. Lively, D. Liang, Y. H. Kuo, J. E. Bowers, “A Distributed Bragg Reflector Silicon Evanescent Laser,” IEEE Photon. Technol. Lett. 20(20), 1667–1669 (2008). [CrossRef]
  16. S. Keyvaninia, G. Roelkens, D. Van Thourhout, C. Jany, M. Lamponi, A. Le Liepvre, F. Lelarge, D. Make, G. H. Duan, D. Bordel, J. M. Fedeli, “Demonstration of a heterogeneously integrated III-V/SOI single wavelength tunable laser,” Opt. Express 21(3), 3784–3792 (2013). [CrossRef] [PubMed]
  17. Y. Zhang, H. Qu, H. Wang, S. Zhang, L. Liu, S. Ma, W. Zheng, “A hybrid silicon single mode laser with a slotted feedback structure,” Opt. Express 21(1), 877–883 (2013). [CrossRef] [PubMed]
  18. Y. de Koninck, F. Raineri, A. Bazin, R. Raj, G. Roelkens, R. Baets, “Experimental demonstration of a hybrid III-V-on-silicon microlaser based on resonant grating cavity mirrors,” Opt. Lett. 38(14), 2496–2498 (2013). [CrossRef] [PubMed]
  19. Y. Nakano, K. Tada, “Analysis, design, and fabrication of GaAlAs/GaAs DFB lasers with modulated stripe width structure for complete single longitudinal mode oscillation,” IEEE J. Quantum Electron. 24(10), 2017–2033 (1988). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited