OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 5 — Mar. 10, 2014
  • pp: 5590–5598

Bimetal coated optical fiber sensors based on surface plasmon resonance induced change in birefringence and intensity

Tan Tai Nguyen, Eun-Cheol Lee, and Heongkyu Ju  »View Author Affiliations


Optics Express, Vol. 22, Issue 5, pp. 5590-5598 (2014)
http://dx.doi.org/10.1364/OE.22.005590


View Full Text Article

Enhanced HTML    Acrobat PDF (1653 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a surface plasmon resonance (SPR) based multimode fiber sensor with non-golden bimetallic coating. Our detection scheme used, which is capable of measuring the combined effects of SPR-induced birefringence and intensity changes, supported the minimum resolvable refractive index (RI) of 5.8 × 10−6 RIU with the operating RI range of 0.05 to be experimentally obtained at a single wavelength (632.8 nm) without non-spectroscopic techniques. The asymmetric profile of the thickness of the bimetal coating on the fiber core together with the inherent range of incidence angle for multimode propagation also contributed to the wide operating range. The SPR fiber device with the detection scheme demonstrated will be likely to be developed as a real-time label-free and highly sensitive diagnostic device of a wide operating range for biomedical and biochemical applications in a portable format.

© 2014 Optical Society of America

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(240.6680) Optics at surfaces : Surface plasmons
(280.4788) Remote sensing and sensors : Optical sensing and sensors

ToC Category:
Sensors

History
Original Manuscript: December 16, 2013
Revised Manuscript: January 30, 2014
Manuscript Accepted: February 10, 2014
Published: March 4, 2014

Citation
Tan Tai Nguyen, Eun-Cheol Lee, and Heongkyu Ju, "Bimetal coated optical fiber sensors based on surface plasmon resonance induced change in birefringence and intensity," Opt. Express 22, 5590-5598 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-5-5590


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. Liedberg, C. Nylander, I. Lundström, “Surface plasmon resonance for gas detection and biosensing,” Sens. Actuators 4, 299–304 (1983). [CrossRef]
  2. P. B. Daniels, J. K. Deacon, M. J. Eddowes, D. Pedley, “Surface plasmon resonance applied to immunosensing,” Sens. Actuators 15, 11–17 (1988). [CrossRef]
  3. R. C. Jorgenson, S. S. Yee, “A fiber optica chemical sensor based on surface plasmon resonance,” Sens. Actuators B 12, 213–220 (1993). [CrossRef]
  4. S. Miwa, T. Arakawa, “Selective gas detection by means of surface plasmon resonance sensor,” Thin Solid Films 281, 466–468 (1996). [CrossRef]
  5. J. Melendez, R. Carr, D. Bartholomew, H. Taneja, S. Yee, C. Jung, C. Furlong, “Development of a surface plasmon resonance sensor for commercial applications,” Sens. Actuators B Chem. 39, 375–379 (1997). [CrossRef]
  6. H. P. Chiang, C. W. Chen, J. J. Wu, H. L. Li, T. Y. Lin, F. J. Sánchez, P. T. Leung, “Effects of temperature on the surface plasmon resonance at a metal-semiconductor interface,” Thin Solid Films 515, 6953–6961 (2007). [CrossRef]
  7. J. Homola, “Optical fiber sensor based on surface plasmon excitation,” Sens. Actuators B Chem. 29, 401–405 (1995). [CrossRef]
  8. R. Slavik, J. Homola, J. Ctyroký, “Miniaturization of fiber optic surface plasmon resonance sensor,” Sens. Actuators B Chem. 51, 311–315 (1998). [CrossRef]
  9. A. J. C. Tubb, F. P. Payne, R. B. Millington, C. R. Lowe, “Sing-mode optical fibre surface plasma wave chemical sensor,” Sens. Actuators B 41, 71–79 (1997). [CrossRef]
  10. R. K. Vema, A. K. Sharma, B. D. Gupta, “Surface plasmon resonance based tapered fiber optic sensor with different taper profiles,” Opt. Commun. 281, 1486–1491 (2008). [CrossRef]
  11. R. Slavik, J. Homola, J. Ctyroký, “Single-mode optical fiber surface plasmon resonance sensor,” Sen. Actuators B Chem. 54, 74–79 (1999). [CrossRef]
  12. W. B. Lin, N. J. Renault, A. Gagnaire, H. Gagnaire, “The effects of polarization of the incident light modelling and analysis of a SPR multimode optical fiber sensor,” Sens. Actuators A Phys. 84, 198–204 (2000). [CrossRef]
  13. E. Fontana, “A novel gold-coated multimode fiber sensor,” IEEE Trans. Microwave Theory Technol. 50, 82–87 (2002). [CrossRef]
  14. H.-Y. Lin, W.-H. Tsa, Y.-C Tsao, B.-C Sheu, “Side-polished multimode fiber biosensors based on surface plasmon resonance with halogen light,” Appl. Opt. 46, 800–806 (2007). [CrossRef] [PubMed]
  15. M. Piliarik, J. Homola, Z. Manikova, J. Ctyroký, “Surface plasmon resonance based on a single mode polarization maintaining optical fiber,” Sens. Actuators B Chem. 90, 236–242 (2003). [CrossRef]
  16. M. H. Chiu, C. H. Shih, M. H. Chi, “Optimum sensitivity of single mode D-type optical fiber sensor in the intensity measurement,” Sens. Actuators B Chem. 123, 1120–1124 (2007). [CrossRef]
  17. M. Mitsushio, K. Miyashita, M. Higo, “Sensor properties and surface characterization of the metal-deposited SPR optical fiber sensors with Au, Ag, Cu and Al,” Sens. Actuators A 125, 296–303 (2006). [CrossRef]
  18. A. K. Sharmal, G. J. Mohr, “On the performance of surface plasmon resonance based fibre optic sensor with different bimetallic nanoparticle alloy combinations,” J. Phys. D Appl. Phys. 41, 055106 (2008). [CrossRef]
  19. B. D. Gupta, A. K. Sharma, “Sensitivity evaluation of a multi-layered surface plasmon resonance-based fiber optic sensor: a theoretical study,” Sens. Actuators B Chem. 107, 40–46 (2005). [CrossRef]
  20. A. A. Kruchinin, Y. G. Vlasov, “Surface plasmon resonance monitoring by means of polarization state measurement in reflected light as the basis of a DNA-probe biosensor,” Sens. Actuators B 30, 77–80 (1996). [CrossRef]
  21. R. C. Weast, ed., CRC Handbook of Chemistry and Physics, 68 (CRC Press, 1987), p. D-232.
  22. S. G. Nelson, K. S. Johnston, S. S. Yee, “High sensitivity surface plasmon resonance sensor based on phase detection,” Sens. Actuators B Chem. 35, 187–191 (1996). [CrossRef]
  23. S. Y. Wu, H. P. Ho, W. C. Law, C. L. Lin, S. K. Kong, “Highly sensitive differential phase-sensitive surface plasmon resonance biosensor based on the Mach-Zehnder configuration,” Opt. Lett. 29, 2378–2380 (2004). [CrossRef] [PubMed]
  24. J. Dostálek, J. Čtyroký, J. Homola, E. Brynda, M. Skalský, P. Nekvindová, J. Spirková, J. Skvor, J. Schröfel, “Surface plasmon resonance biosensor based on integrated optical waveguide,” Sens. Actuators B 76, 8–12 (2001). [CrossRef]
  25. M. Zourob, S. Mohr, B. J. T. Brown, P. R. Fielden, M. B. McDonnell, N. J. Goddard, “Bacteria detection using disposable optical leaky waveguide sensors,” Biosens. Bioelectr. 21, 293–302 (2005). [CrossRef]
  26. J.-G. Huang, C.-L. Lee, H.-M. Lin, T.-L. Chuang, W.-S. Wang, R.-H. Juang, C.-H. Wang, C. K. Lee, “A miniaturized germanium-doped silicon dioxide-based surface plasmon resonance waveguide sensor for immunoassay detection,” Biosens. Bioelectr. 22, 519–525 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited