OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 5 — Mar. 10, 2014
  • pp: 5623–5634

Aberration measurement technique based on an analytical linear model of a through-focus aerial image

Guanyong Yan, Xiangzhao Wang, Sikun Li, Jishuo Yang, Dongbo Xu, and Andreas Erdmann  »View Author Affiliations


Optics Express, Vol. 22, Issue 5, pp. 5623-5634 (2014)
http://dx.doi.org/10.1364/OE.22.005623


View Full Text Article

Enhanced HTML    Acrobat PDF (1424 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose an in situ aberration measurement technique based on an analytical linear model of through-focus aerial images. The aberrations are retrieved from aerial images of six isolated space patterns, which have the same width but different orientations. The imaging formulas of the space patterns are investigated and simplified, and then an analytical linear relationship between the aerial image intensity distributions and the Zernike coefficients is established. The linear relationship is composed of linear fitting matrices and rotation matrices, which can be calculated numerically in advance and utilized to retrieve Zernike coefficients. Numerical simulations using the lithography simulators PROLITH and Dr.LiTHO demonstrate that the proposed method can measure wavefront aberrations up to Z37. Experiments on a real lithography tool confirm that our method can monitor lens aberration offset with an accuracy of 0.7 nm.

© 2014 Optical Society of America

OCIS Codes
(120.3940) Instrumentation, measurement, and metrology : Metrology
(220.1010) Optical design and fabrication : Aberrations (global)
(220.3740) Optical design and fabrication : Lithography

ToC Category:
Geometric Optics

History
Original Manuscript: January 20, 2014
Revised Manuscript: February 21, 2014
Manuscript Accepted: February 23, 2014
Published: March 4, 2014

Citation
Guanyong Yan, Xiangzhao Wang, Sikun Li, Jishuo Yang, Dongbo Xu, and Andreas Erdmann, "Aberration measurement technique based on an analytical linear model of a through-focus aerial image," Opt. Express 22, 5623-5634 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-5-5623


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. Graeupner, R. Garreis, A. Goehnermeiter, T. Heil, M. Lowisch, D. Flagello, “Impact of wavefront errors on low k1 processes at extreme high NA,” Proc. SPIE 5040, 119–130 (2003). [CrossRef]
  2. H. van der Laan, M. Dierichs, H. van Greevenbroek, E. McCoo, F. Stoffels, R. Pongers, R. Willekers, “Aerial image measurement methods for fast aberration set-up and illumination pupil verification,” Proc. SPIE 4346, 394–407 (2001). [CrossRef]
  3. F. Wang, X. Wang, M. Ma, D. Zhang, W. Shi, J. Hu, “Aberration measurement of projection optics in lithographic tools by use of an alternating phase-shifting mask,” Appl. Opt. 45(2), 281–287 (2006). [CrossRef] [PubMed]
  4. Q. Yuan, X. Wang, Z. Qiu, F. Wang, M. Ma, L. He, “Coma measurement of projection optics in lithographic tools based on relative image displacements at multiple illumination settings,” Opt. Express 15(24), 15878–15885 (2007). [CrossRef] [PubMed]
  5. Z. Qiu, X. Wang, Q. Yuan, F. Wang, “Coma measurement by use of an alternating phase-shifting mask mark with a specific phase width,” Appl. Opt. 48(2), 261–269 (2009). [CrossRef] [PubMed]
  6. T. Hagiwara, N. Kondo, I. Hiroshi, K. Suzuki, N. Magome, “Development of aerial image based aberration measurement technique,” Proc. SPIE 5754, 1659–1669 (2005). [CrossRef]
  7. J. K. Tyminski, T. Hagiwara, N. Kondo, H. Irihama, “Aerial image sensor: in-situ scanner aberration monitor,” Proc. SPIE 6152, 61523D (2006). [CrossRef]
  8. W. Liu, S. Liu, T. Zhou, L. Wang, “Aerial image based technique for measurement of lens aberrations up to 37th Zernike coefficient in lithographic tools under partial coherent illumination,” Opt. Express 17(21), 19278–19291 (2009). [CrossRef] [PubMed]
  9. W. Liu, S. Liu, T. Shi, Z. Tang, “Generalized formulations for aerial image based lens aberration metrology in lithographic tools with arbitrarily shaped illumination sources,” Opt. Express 18(19), 20096–20104 (2010). [CrossRef] [PubMed]
  10. A. Y. Bourov, L. Li, Z. Yang, F. Wang, L. Duan, “Aerial image model and application to aberration measurement,” Proc. SPIE 7640, 764032 (2010). [CrossRef]
  11. L. Duan, X. Wang, A. Y. Bourov, B. Peng, P. Bu, “In situ aberration measurement technique based on principal component analysis of aerial image,” Opt. Express 19(19), 18080–18090 (2011). [CrossRef] [PubMed]
  12. L. Duan, X. Wang, G. Yan, A. Y. Bourov, “Practical application of aerial image by principal component analysis to measure wavefront aberration of lithographic lens,”J. Micro/Nanolith. MEMS MOEMS. 11(2), 023009 (2012). [CrossRef]
  13. D. Xu, X. Wang, Y. Bu, L. Duan, G. Yan, J. Yang, A. Y. Bourov, “In situ aberration measurement technique based on multi-illumination settings and principal component analysis of aerial images,” Chin. Opt. Lett. 10, 121202 (2012). [CrossRef]
  14. C. A. Mack, “Lithography simulation in semiconductor manufacturing,” Proc. SPIE 5645, 63–83 (2005). [CrossRef]
  15. T. Fühner, T. Schnattinger, G. Ardelean, A. Erdmann, “Dr. LiTHO - a development and research lithography simulator,” Proc. SPIE 6520, 65203F (2007). [CrossRef]
  16. A. K. Wong, Optical Imaging in Projection Microlithography (SPIE Press, 2005).
  17. C. A. Mack, Fundamental Principles of Optical Lithography: The Science of Microfabrication (John Wiley & Sons Ltd, 2007).
  18. W. Singer, M. Totzeck, and H. Gross, Handbook of Optical Systems: Physical Image Formation (Wiley-VCH Verlag GmbH & Co. KGaA, 2008).
  19. S. van Haver, O. T. A. Janssen, J. J. M. Braat, A. J. E. M. Janssen, H. P. Urbach, S. F. Pereira, “General imaging of advanced 3D mask objects based on the fully-vectorial extended Nijboer-Zernike (ENZ) theory,” Proc. SPIE 6924, 69240U (2008). [CrossRef]
  20. A. J. E. M. Janssen, “Extended Nijboer-Zernike approach for the computation of optical point-spread functions,” J. Opt. Soc. Am. A 19(5), 849–857 (2002). [CrossRef] [PubMed]
  21. J. J. M. Braat, P. Dirksen, A. J. E. M. Janssen, “Assessment of an extended Nijboer-Zernike approach for the computation of optical point-spread functions,” J. Opt. Soc. Am. A 19(5), 858–870 (2002). [CrossRef] [PubMed]
  22. C. van der Avoort, J. J. M. Braat, P. Dirksen, A. J. E. M. Janssen, “Aberration retrieval from the intensity point-spread function in the focal region using the extended Nijboer-Zernike approach,” J. Mod. Opt. 52, 1695–1728 (2005). [CrossRef]
  23. L. Duan, J. Cheng, G. Sun, Y. Chen, “New 0.75 NA ArF scanning lithographic tool,” Proc. SPIE 7973, 79732D (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited