OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 5 — Mar. 10, 2014
  • pp: 5731–5745

Noise suppressed optical diffraction tomography with autofocus correction

Julianna Kostencka, Tomasz Kozacki, Michał Dudek, and Małgorzata Kujawińska  »View Author Affiliations


Optics Express, Vol. 22, Issue 5, pp. 5731-5745 (2014)
http://dx.doi.org/10.1364/OE.22.005731


View Full Text Article

Enhanced HTML    Acrobat PDF (5329 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose a novel tomographic measurement approach that enables a noise suppressed characterization of microstructures. The idea of this work is based on a finding that coherent noise in the input phase data generates an artificial circular structure whose magnitude is the highest at the centre of tomographic reconstruction. This method decreases the noise level by applying an unconventional tomographic measurement configuration with an object deliberately shifted with respect to the rotation axis. This enables a spatial separation between the reconstructed sample structure and the area of the largest refractive index perturbations. The input phase data defocusing that is a by-product of the introduced modification is numerically corrected with an automatic focus correction algorithm. The proposed method is validated with simulations and experimental measurements of an optical microtip.

© 2014 Optical Society of America

OCIS Codes
(030.6140) Coherence and statistical optics : Speckle
(110.6960) Imaging systems : Tomography
(180.6900) Microscopy : Three-dimensional microscopy
(090.1995) Holography : Digital holography

ToC Category:
Imaging Systems

History
Original Manuscript: September 25, 2013
Revised Manuscript: January 14, 2014
Manuscript Accepted: January 14, 2014
Published: March 5, 2014

Virtual Issues
Vol. 9, Iss. 5 Virtual Journal for Biomedical Optics

Citation
Julianna Kostencka, Tomasz Kozacki, Michał Dudek, and Małgorzata Kujawińska, "Noise suppressed optical diffraction tomography with autofocus correction," Opt. Express 22, 5731-5745 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-5-5731


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. Górski, W. Osten, “Tomographic imaging of photonic crystal fibers,” Opt. Lett. 32(14), 1977–1979 (2007). [CrossRef] [PubMed]
  2. T. Kozacki, R. Krajewski, M. Kujawińska, “Reconstruction of refractive-index distribution in off-axis digital holography optical diffraction tomographic system,” Opt. Express 17(16), 13758–13767 (2009). [CrossRef] [PubMed]
  3. M. Kujawińska, V. Parat, M. Dudek, B. Siwicki, S. Wójcik, G. Baethge, B. Dahmani, “Interferometric and tomographic investigations of polymer microtips fabricated at the extremity of optical fibers,” Proc. SPIE8494 (2012).
  4. F. Charrière, A. Marian, F. Montfort, J. Kuehn, T. Colomb, E. Cuche, P. Marquet, C. Depeursinge, “Cell refractive index tomography by digital holographic microscopy,” Opt. Lett. 31(2), 178–180 (2006). [CrossRef] [PubMed]
  5. F. Charrière, N. Pavillon, T. Colomb, C. Depeursinge, T. J. Heger, E. A. D. Mitchell, P. Marquet, B. Rappaz, “Living specimen tomography by digital holographic microscopy: morphometry of testate amoeba,” Opt. Express 14(16), 7005–7013 (2006). [CrossRef] [PubMed]
  6. Y. Sung, W. Choi, C. Fang-Yen, K. Badizadegan, R. R. Dasari, M. S. Feld, “Optical diffraction tomography for high resolution live cell imaging,” Opt. Express 17(1), 266–277 (2009). [CrossRef] [PubMed]
  7. T. C. Wedberg, J. J. Stamnes, “Comparison of phase-retrieval methods for optical diffraction tomography,” Pure Appl. Opt. 4(1), 39–54 (1995). [CrossRef]
  8. T. Kreis, Handbook of Holographic Interferometry: Optical and Digital Methods (Wiley-VCH Verlag GmbH & Co. KGaA, 2005).
  9. F. Charrière, J. Kühn, T. Colomb, F. Montfort, E. Cuche, Y. Emery, K. Weible, P. Marquet, C. Depeursinge, “Characterization of microlenses by digital holographic microscopy,” Appl. Opt. 45(5), 829–835 (2006). [CrossRef] [PubMed]
  10. B. Kemper, G. von Bally, “Digital holographic microscopy for live cell applications and technical inspection,” Appl. Opt. 47(4), A52–A61 (2008). [CrossRef] [PubMed]
  11. A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging, (Society for Industrial and Applied Mathematics, New York, 2001), Chap. 3.
  12. T. C. Wedberg, J. J. Stamnes, W. Singer, “Comparison of the filtered backpropagation and the filtered backprojection algorithms for quantitative tomography,” Appl. Opt. 34(28), 6575–6581 (1995). [CrossRef] [PubMed]
  13. Y. Jeon, C. K. Hong, “Rotation error correction by numerical focus adjustment in tomographic phase microscopy,” Opt. Eng. 48(10), 105801 (2009). [CrossRef]
  14. W. Choi, C. Fang-Yen, K. Badizadegan, R. R. Dasari, M. S. Feld, “Extended depth of focus in tomographic phase microscopy using a propagation algorithm,” Opt. Lett. 33(2), 171–173 (2008). [CrossRef] [PubMed]
  15. S. Vertu, M. Ochiai, M. Shuzo, I. Yamada, J. Delaunay, O. Haeberlé, and Y. Okamoto, “Optical projection microtomography of transparent objects,” SPIE Proc. 6627 (2007). [CrossRef]
  16. W. Górski, “Tomographic interferometry of optical phase microelements,” Opto-Electron. Rev. 9, 347–352 (2011).
  17. T. Kozacki, M. Kujawińska, P. Kniażewski, “Investigation of limitations of optical diffraction tomography,” Opto-Electron. Rev. 15(2), 102–109 (2007). [CrossRef]
  18. P. Langehanenberg, B. Kemper, D. Dirksen, G. von Bally, “Autofocusing in digital holographic phase contrast microscopy on pure phase objects for live cell imaging,” Appl. Opt. 47(19), D176–D182 (2008). [CrossRef] [PubMed]
  19. W. Li, N. C. Loomis, Q. Hu, C. S. Davis, “Focus detection from digital in-line holograms based on spectral l1 norms,” J. Opt. Soc. Am. A 24(10), 3054–3062 (2007). [CrossRef] [PubMed]
  20. J. Kostencka, T. Kozacki, K. Liżewski, “Autofocusing method for tilted image plane detection in digital holographic microscopy,” Opt. Commun. 297, 20–26 (2013). [CrossRef]
  21. A. Yin, B. Chen, Y. Zhang, “Focusing evaluation method based on wavelet transform and adaptive genetic algorithm,” Opt. Eng. 51(2), 023201 (2012). [CrossRef]
  22. R. Gordon, “A tutorial on ART (algebraic reconstruction technique),” IEEE Trans. Nucl. Sci. 21(3), 78–93 (1974). [CrossRef]
  23. D. Verhoeven, “Limited-data computed tomography algorithms for the physical sciences,” Appl. Opt. 32(20), 3736–3754 (1993). [CrossRef] [PubMed]
  24. A. J. Devaney, “A filtered backpropagation algorithm for diffraction tomography,” Ultrason. Imaging 4(4), 336–350 (1982). [PubMed]
  25. S. X. Pan, A. C. Kak, “A computational study of reconstruction algorithms for diffraction tomography: Interpolation versus filtered-backpropagation,” Acoustics, Speech and Signal Processing 31(5), 1262–1275 (1983). [CrossRef]
  26. T. Kozacki, M. Józwik, R. Józwicki, “Determination of optical field generated by a microlens using digital holographic method,” Opto-Electron. Rev. 17(3), 58–63 (2009). [CrossRef]
  27. I. Yamaguchi, T. Zhang, “Phase-shifting digital holography,” Opt. Lett. 22(16), 1268–1270 (1997). [CrossRef] [PubMed]
  28. T. Kozacki, K. Falaggis, M. Kujawińska, “Computation of diffracted fields for the case of high numerical aperture using the angular spectrum method,” Appl. Opt. 51(29), 7080–7088 (2012). [CrossRef] [PubMed]
  29. K.-H. Brenner, W. Singer, “Light propagation through microlenses: a new simulation method,” Appl. Opt. 32(26), 4984–4988 (1993). [CrossRef] [PubMed]
  30. R. Bachelot, C. Ecoffet, D. Deloeil, P. Royer, D. J. Lougnot, “Integration of Micrometer-Sized Polymer Elements at the End of Optical Fibers by Free-Radical Photopolymerization,” Appl. Opt. 40(32), 5860–5871 (2001). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited