OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 5 — Mar. 10, 2014
  • pp: 5772–5780

Metal nanodisk hybrid plasmonic resonator on dielectric substrate for relieved fabrication complexity

Chang Yeong Jeong, Myunghwan Kim, and Sangin Kim  »View Author Affiliations


Optics Express, Vol. 22, Issue 5, pp. 5772-5780 (2014)
http://dx.doi.org/10.1364/OE.22.005772


View Full Text Article

Enhanced HTML    Acrobat PDF (1953 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose a metal nanodisk hybrid plasmonic resonator (HPR), which consists of a metallic nanodisk on top of a dielectric slab. In contrast to the previously studied plasmonic resonator structures based on metal substrates such as the nanopatch resonator, the fabrication process of the proposed resonator is much easier because of a dielectric substrate. The performance of the proposed resonator has been theoretically investigated and compared to the previously studied structures. It has been shown that the performance of the proposed resonator is superior to that of the nanopatch resonator and comparable to that of a hybrid resonator based on a metal substrate.

© 2014 Optical Society of America

OCIS Codes
(230.7370) Optical devices : Waveguides
(240.6680) Optics at surfaces : Surface plasmons
(050.6624) Diffraction and gratings : Subwavelength structures
(070.7345) Fourier optics and signal processing : Wave propagation

ToC Category:
Plasmonics

History
Original Manuscript: December 16, 2013
Revised Manuscript: February 20, 2014
Manuscript Accepted: February 24, 2014
Published: March 5, 2014

Citation
Chang Yeong Jeong, Myunghwan Kim, and Sangin Kim, "Metal nanodisk hybrid plasmonic resonator on dielectric substrate for relieved fabrication complexity," Opt. Express 22, 5772-5780 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-5-5772


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Gao, J. F. McMilan, M. C. Wu, J. Zheng, S. Assefa, C. W. Wong, “Demonstration of an air-slot mode-gap confined photonic crystal slab nanocavity with ultrasmall mode volumes,” Appl. Phys. Lett. 96(5), 051123 (2010). [CrossRef]
  2. K. Nozaki, T. Baba, “Laser characteristics with ultimate-small mode volume in photonic crystal slab point-shift nanolasers,” Appl. Phys. Lett. 88(21), 211101 (2006). [CrossRef]
  3. B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, J. Vuckovic, “Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser,” Nat. Photonics 3(1), 55–58 (2009).
  4. E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).
  5. D. A. Genov, R. F. Oulton, G. Bartal, X. Zhang, “Anomalous spectral scaling of light emission rates in low-dimensional metallic nanostructures,” Phys. Rev. B 83(24), 245312 (2011). [CrossRef]
  6. M. T. Hill, Y. S. Oei, B. Smalbrugge, Y. Zhu, T. D. Vries, P. J. V. Veldhoven, F. W. M. V. Otten, T. J. Eijkemans, J. P. Turkiewicz, H. D. Waardt, E. J. Geluk, S. H. Kwon, Y. H. Lee, R. Notzel, M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics 1(10), 589–594 (2007). [CrossRef]
  7. M. K. Seo, S. H. Kwon, H. S. Ee, H. G. Park, “Full three-dimensional subwavelength high-Q surface-plasmon-polariton cavity,” Nano Lett. 9(12), 4078–4082 (2009). [CrossRef] [PubMed]
  8. J. H. Kang, Y. S. No, S. H. Kwon, H. G. Park, “Ultrasmall subwavelength nanorod plasmonic cavity,” Opt. Lett. 36(11), 2011–2013 (2011). [CrossRef] [PubMed]
  9. A. Mizrahi, V. Lomakin, B. A. Slutsky, M. P. Nezhad, L. Feng, Y. Fainman, “Low threshold gain metal coated laser nanoresonators,” Opt. Lett. 33(11), 1261–1263 (2008). [CrossRef] [PubMed]
  10. K. J. Russell, T. L. Liu, S. Cui, E. L. Hu, “Large spontaneous emission enhancement in plasmonic nanocavities,” Nat. Photonics 6(7), 459–462 (2012). [CrossRef]
  11. R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008). [CrossRef]
  12. R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009). [CrossRef] [PubMed]
  13. W. Cai, J. S. White, M. L. Brongersma, “Compact, high-speed and power-efficient electrooptic plasmonic modulators,” Nano Lett. 9(12), 4403–4411 (2009). [CrossRef] [PubMed]
  14. V. J. Sorger, N. D. L. Kimura, R. M. Ma, X. Zhang, “Ultra-compact silicon nanophotonic modulator with broadband response,” Nanophotonics 1(1), 17–22 (2012). [CrossRef]
  15. F. Vollmer, S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5(7), 591–596 (2008). [CrossRef] [PubMed]
  16. T. J. Kippenberg, J. Kalkman, A. Polman, K. J. Vahala, “Demonstration of an erbium-doped microdisk laser on a silicon chip,” Phys. Rev. A 74(5), 051802 (2006). [CrossRef]
  17. K.-H. Su, S. Durant, J. M. Steele, Y. Xiong, C. Sun, X. Zhang, “Raman enhancement factor of a single tunable nanoplasmonic resonator,” J. Phys. Chem. B 110(9), 3964–3968 (2006). [CrossRef] [PubMed]
  18. K. H. Su, Q. H. Wei, X. Zhang, “Tunable and augmented plasmon resonances of Au/SiO2/Au nanodisks,” Appl. Phys. Lett. 88(6), 063118 (2006). [CrossRef]
  19. M. Kuttge, F. J. García de Abajo, A. Polman, “Ultrasmall mode volume plasmonic nanodisk resonators,” Nano Lett. 10(5), 1537–1541 (2010). [CrossRef] [PubMed]
  20. K. Yu, A. Lakhani, M. C. Wu, “Subwavelength metal-optic semiconductor nanopatch lasers,” Opt. Express 18(9), 8790–8799 (2010). [CrossRef] [PubMed]
  21. S.-H. Kwon, “Deep subwavelength plasmonic whispering-gallery-mode cavity,” Opt. Express 20(22), 24918–24924 (2012). [CrossRef] [PubMed]
  22. R.-M. Ma, R. F. Oulton, V. J. Sorger, G. Bartal, X. Zhang, “Room-temperature sub-diffraction-limited plasmon laser by total internal reflection,” Nat. Mater. 10(2), 110–113 (2011). [CrossRef] [PubMed]
  23. R.-M. Ma, X. Yin, R. F. Oulton, V. J. Sorger, X. Zhang, “Multiplexed and electrically modulated plasmon laser circuit,” Nano Lett. 12(10), 5396–5402 (2012). [CrossRef] [PubMed]
  24. P. B. Johnson, R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972). [CrossRef]
  25. S.-W. Chang, S. L. Chuang, “Normal modes for plasmonic nanolasers with dispersive and inhomogeneous media,” Opt. Lett. 34(1), 91–93 (2009). [CrossRef] [PubMed]
  26. P. Berini, “Figures of merit for surface plasmon waveguides,” Opt. Express 14(26), 13030–13042 (2006). [CrossRef] [PubMed]
  27. A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 1995).
  28. W. Porod, D. K. Ferry, “Modification of the virtual-crystal approximation for ternary III-V compounds,” Phys. Rev. B 27(4), 2587–2589 (1983). [CrossRef]
  29. J.-K. Hwang, H.-Y. Ryu, Y.-H. Lee, “Spontaneous emission rate of an electric dipole in a general microcavity,” Phys. Rev. B 60(7), 4688–4695 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited