OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 5 — Mar. 10, 2014
  • pp: 5787–5807

Model for estimating the penetration depth limit of the time-reversed ultrasonically encoded optical focusing technique

Mooseok Jang, Haowen Ruan, Benjamin Judkewitz, and Changhuei Yang  »View Author Affiliations

Optics Express, Vol. 22, Issue 5, pp. 5787-5807 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (2492 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The time-reversed ultrasonically encoded (TRUE) optical focusing technique is a method that is capable of focusing light deep within a scattering medium. This theoretical study aims to explore the depth limits of the TRUE technique for biological tissues in the context of two primary constraints – the safety limit of the incident light fluence and a limited TRUE’s recording time (assumed to be 1 ms), as dynamic scatterer movements in a living sample can break the time-reversal scattering symmetry. Our numerical simulation indicates that TRUE has the potential to render an optical focus with a peak-to-background ratio of ~2 at a depth of ~103 mm at wavelength of 800 nm in a phantom with tissue scattering characteristics. This study sheds light on the allocation of photon budget in each step of the TRUE technique, the impact of low signal on the phase measurement error, and the eventual impact of the phase measurement error on the strength of the TRUE optical focus.

© 2014 Optical Society of America

OCIS Codes
(070.5040) Fourier optics and signal processing : Phase conjugation
(090.2880) Holography : Holographic interferometry
(110.7050) Imaging systems : Turbid media
(170.7170) Medical optics and biotechnology : Ultrasound
(090.1995) Holography : Digital holography
(220.1080) Optical design and fabrication : Active or adaptive optics

ToC Category:
Imaging Systems

Original Manuscript: January 8, 2014
Revised Manuscript: February 27, 2014
Manuscript Accepted: February 27, 2014
Published: March 5, 2014

Virtual Issues
Vol. 9, Iss. 5 Virtual Journal for Biomedical Optics

Mooseok Jang, Haowen Ruan, Benjamin Judkewitz, and Changhuei Yang, "Model for estimating the penetration depth limit of the time-reversed ultrasonically encoded optical focusing technique," Opt. Express 22, 5787-5807 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. Ntziachristos, “Going deeper than microscopy: the optical imaging frontier in biology,” Nat. Methods 7(8), 603–614 (2010). [CrossRef] [PubMed]
  2. X. Xu, H. Liu, L. V. Wang, “Time-reversed ultrasonically encoded optical focusing into scattering media,” Nat. Photonics 5(3), 154–157 (2011). [CrossRef] [PubMed]
  3. Y. M. Wang, B. Judkewitz, C. A. Dimarzio, C. Yang, “Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light,” Nat Commun 3, 928 (2012). [CrossRef] [PubMed]
  4. K. Si, R. Fiolka, M. Cui, “Fluorescence imaging beyond the ballistic regime by ultrasound pulse guided digital phase conjugation,” Nat. Photonics 6(10), 657–661 (2012). [CrossRef] [PubMed]
  5. K. Si, R. Fiolka, M. Cui, “Breaking the spatial resolution barrier via iterative sound-light interaction in deep tissue microscopy,” Sci. Rep. 2, 748 (2012). [CrossRef] [PubMed]
  6. L. V. Wang, “Mechanisms of Ultrasonic Modulation of Multiply Scattered Coherent Light: An Analytic Model,” Phys. Rev. Lett. 87(4), 043903 (2001). [CrossRef] [PubMed]
  7. Z. Yaqoob, D. Psaltis, M. S. Feld, C. Yang, “Optical Phase Conjugation for Turbidity Suppression in Biological Samples,” Nat. Photonics 2(2), 110–115 (2008). [CrossRef] [PubMed]
  8. M. Cui, E. J. McDowell, C. Yang, “An in vivo study of turbidity suppression by optical phase conjugation (TSOPC) on rabbit ear,” Opt. Express 18(1), 25–30 (2010). [CrossRef] [PubMed]
  9. M. Cui, C. Yang, “Implementation of a digital optical phase conjugation system and its application to study the robustness of turbidity suppression by phase conjugation,” Opt. Express 18(4), 3444–3455 (2010). [CrossRef] [PubMed]
  10. B. Judkewitz, Y. M. Wang, R. Horstmeyer, A. Mathy, C. Yang, “Speckle-scale focusing in the diffusive regime with time-reversal of variance-encoded light (TROVE),” Nat. Photonics 7(4), 300–305 (2013). [CrossRef] [PubMed]
  11. Laser Institute of America, American National Standard for Safe Use of Lasers ANSI Z136.1–2000 (American National Standards Institute Inc., 2000).
  12. I. Vellekoop, C. Aegerter, “Focusing light through living tissue,” Proc. SPIE 7554, 755430 (2010).
  13. D. B. Conkey, A. M. Caravaca-Aguirre, R. Piestun, “High-speed scattering medium characterization with application to focusing light through turbid media,” Opt. Express 20(2), 1733–1740 (2012). [CrossRef] [PubMed]
  14. I. Yamaguchi, T. Zhang, “Phase-shifting digital holography,” Opt. Lett. 27, 1108–1110 (1997). [CrossRef] [PubMed]
  15. G. Marquez, L. V. Wang, S. P. Lin, J. A. Schwartz, S. L. Thomsen, “Anisotropy in the absorption and scattering spectra of chicken breast tissue,” Appl. Opt. 37(4), 798–804 (1998). [CrossRef] [PubMed]
  16. D. Dalecki, “Mechanical bioeffects of ultrasound,” Annu. Rev. Biomed. Eng. 6(1), 229–248 (2004). [CrossRef] [PubMed]
  17. U.S. Department of Health and Human Services, “Guidance for Industry and FDA Staff—Information for Manufacturers Seeking Marketing Clearance of Diagnostic Ultrasound Systems and Transducers,” (2008).
  18. M. Cui, E. J. McDowell, C. Yang, “An in vivo study of turbidity suppression by optical phase conjugation (TSOPC) on rabbit ear,” Opt. Express 18(1), 25–30 (2010). [CrossRef] [PubMed]
  19. J. Goodman, Speckle Phenomena in Optics: Theory and Applications (Roberts and Company Publishers, 2007).
  20. S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, S. Gigan, “Measuring the Transmission Matrix in Optics: An Approach to the Study and Control of Light Propagation in Disordered Media,” Phys. Rev. Lett. 104(10), 100601 (2010). [CrossRef] [PubMed]
  21. A. Mosk, A. Lagendijk, G. Lerosey, M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6(5), 283–292 (2012). [CrossRef]
  22. F. Martelli, S. Del Bianco, A. Ismaelli, and G. Zaccanti, Light Propagation through Biological Tissue and Other Diffusive Media: Theory, Solutions, and Software (SPIE Press, 2010).
  23. R. C. Haskell, L. O. Svaasand, T. T. Tsay, T. C. Feng, M. S. McAdams, B. J. Tromberg, “Boundary conditions for the diffusion equation in radiative transfer,” J. Opt. Soc. Am. A 11(10), 2727–2741 (1994). [CrossRef] [PubMed]
  24. W. Riley, W. Klein, “Piezo Optic Coefficients of Liquids,” J. Acoust. Soc. Am. 42(6), 1258–1261 (1967). [CrossRef]
  25. M. Moharam, T. Gaylord, R. Magnusson, “Criteria for Raman-Nath regime diffraction by phase gratings,” Opt. Commun. 32(1), 19–23 (1980). [CrossRef]
  26. T. K. Gaylord, M. G. Moharam, “Thin and thick gratings: terminology clarification,” Appl. Opt. 20(19), 3271–3273 (1981). [CrossRef] [PubMed]
  27. J. Huang, J. Nissen, E. Bodegom, “Diffraction of light by a focused ultrasonic wave,” J. Appl. Phys. 71(1), 70–75 (1992). [CrossRef]
  28. I. M. Vellekoop, A. P. Mosk, “Focusing coherent light through opaque strongly scattering media,” Opt. Lett. 32(16), 2309–2311 (2007). [CrossRef] [PubMed]
  29. M. O. Culjat, D. Goldenberg, P. Tewari, R. S. Singh, “A review of tissue substitutes for ultrasound imaging,” Ultrasound Med. Biol. 36(6), 861–873 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited