OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 5 — Mar. 10, 2014
  • pp: 5839–5851

High fluence laser damage precursors and their mitigation in fused silica

J. Bude, P. Miller, S. Baxamusa, N. Shen, T. Laurence, W. Steele, T. Suratwala, L. Wong, W. Carr, D. Cross, and M. Monticelli  »View Author Affiliations


Optics Express, Vol. 22, Issue 5, pp. 5839-5851 (2014)
http://dx.doi.org/10.1364/OE.22.005839


View Full Text Article

Enhanced HTML    Acrobat PDF (2486 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The use of any optical material is limited at high fluences by laser-induced damage to optical surfaces. In many optical materials, the damage results from a series of sources which initiate at a large range of fluences and intensities. Much progress has been made recently eliminating silica surface damage due to fracture-related precursors at relatively low fluences (i.e., less than 10 J/cm2, when damaged by 355 nm, 5 ns pulses). At higher fluence, most materials are limited by other classes of damage precursors which exhibit a strong threshold behavior and high areal density (>105 cm−2); we refer to these collectively as high fluence precursors. Here, we show that a variety of nominally transparent materials in trace quantities can act as surface damage precursors. We show that by minimizing the presence of precipitates during chemical processing, we can reduce damage density in silica at high fluence by more than 100 times while shifting the fluence onset of observable damage by about 7 J/cm2. A better understanding of the complex chemistry and physics of cleaning, rinsing, and drying will likely lead to even further improvements in the damage performance of silica and potentially other optical materials.

© 2014 Optical Society of America

OCIS Codes
(140.3330) Lasers and laser optics : Laser damage
(160.2750) Materials : Glass and other amorphous materials
(160.6030) Materials : Silica

ToC Category:
Materials

History
Original Manuscript: January 22, 2014
Revised Manuscript: February 20, 2014
Manuscript Accepted: February 25, 2014
Published: March 5, 2014

Citation
J. Bude, P. Miller, S. Baxamusa, N. Shen, T. Laurence, W. Steele, T. Suratwala, L. Wong, W. Carr, D. Cross, and M. Monticelli, "High fluence laser damage precursors and their mitigation in fused silica," Opt. Express 22, 5839-5851 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-5-5839


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. B. Glebov, “Intrinsic laser-induced breakdown of silicate glasses,” Proc. SPIE 4679, 321–331 (2002). [CrossRef]
  2. G. Hu, Y. Zhao, X. Liu, D. Li, Q. Xiao, K. Yi, J. Shao, “Combining wet etching and real-time damage event imaging to reveal the most dangerous laser damage initiator in fused silica,” Opt. Lett. 38(15), 2632–2635 (2013). [CrossRef] [PubMed]
  3. S. C. Jones, P. Braunlich, R. T. Casper, X.-A. Shen, P. Kelly, “Recent progress on laser-induced modifications and intrinsic bulk damage of wide-gap optical materials,” Opt. Eng. 28(10), 1039–1068 (1989). [CrossRef]
  4. T. A. Laurence, J. D. Bude, N. Shen, T. Feldman, P. E. Miller, W. A. Steele, T. Suratwala, “Metallic-like photoluminescence and absorption in fused silica surface flaws,” Appl. Phys. Lett. 94(15), 151114 (2009). [CrossRef]
  5. P. E. Miller, J. D. Bude, T. I. Suratwala, N. Shen, T. A. Laurence, W. A. Steele, J. Menapace, M. D. Feit, L. L. Wong, “Fracture-induced subbandgap absorption as a precursor to optical damage on fused silica surfaces,” Opt. Lett. 35(16), 2702–2704 (2010). [CrossRef] [PubMed]
  6. M. A. Norton, E. E. Donohue, M. D. Feit, R. P. Hackel, W. G. Hollingsworth, A. M. Rubenchik, M. L. Spaeth, “Growth of laser damage on the input surface of sio 2 at 351 nm,” Proc. SPIE 6403, 64030L (2006). [CrossRef]
  7. A. V. Smith, B. T. Do, “Bulk and surface laser damage of silica by picosecond and nanosecond pulses at 1064 nm,” Appl. Opt. 47(26), 4812–4832 (2008). [CrossRef] [PubMed]
  8. T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, L. L. Wong, “Hf-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011). [CrossRef]
  9. N. Shen, J. Bude, C. W. Carr, “Model laser damage precursors for high quality optical materials,” Opt. Express 22(3), 3393–3404 (2014). [CrossRef]
  10. C. W. Carr, J. D. Bude, P. DeMange, “Laser-supported solid-state absorption fronts in silica,” Phys. Rev. B 82(18), 184304 (2010). [CrossRef]
  11. P. E. Miller, T. I. Suratwala, J. D. Bude, T. A. Laurence, N. Shen, W. A. Steele, M. D. Feit, J. A. Menapace, L. L. Wong, “Laser damage precursors in fused silica,” Proc. SPIE 7504, 75040X (2009). [CrossRef]
  12. J. Neauport, L. Lamaignere, H. Bercegol, F. Pilon, J. C. Birolleau, “Polishing-induced contamination of fused silica optics and laser induced damage density at 351 nm,” Opt. Express 13(25), 10163–10171 (2005). [CrossRef] [PubMed]
  13. P. E. Miller, T. I. Suratwala, J. D. Bude, N. Shen, W. A. Steele, T. A. Laurence, M. D. Feit, and L. L. Wong, “Methods for globally treating silica optics to reduce optical damage,” US8313662 (2012).
  14. C. A. Haynam, P. J. Wegner, J. M. Auerbach, M. W. Bowers, S. N. Dixit, G. V. Erbert, G. M. Heestand, M. A. Henesian, M. R. Hermann, K. S. Jancaitis, K. R. Manes, C. D. Marshall, N. C. Mehta, J. Menapace, E. Moses, J. R. Murray, M. C. Nostrand, C. D. Orth, R. Patterson, R. A. Sacks, M. J. Shaw, M. Spaeth, S. B. Sutton, W. H. Williams, C. C. Widmayer, R. K. White, S. T. Yang, B. M. Van Wonterghem, “National Ignition Facility laser performance status,” Appl. Opt. 46(16), 3276–3303 (2007). [CrossRef] [PubMed]
  15. T. A. Laurence, J. D. Bude, S. Ly, N. Shen, M. D. Feit, “Extracting the distribution of laser damage precursors on fused silica surfaces for 351 nm, 3 ns laser pulses at high fluences (20-150 J/cm2),” Opt. Express 20(10), 11561–11573 (2012). [CrossRef] [PubMed]
  16. R. A. Negres, M. D. Feit, S. G. Demos, “Dynamics of material modifications following laser-breakdown in bulk fused silica,” Opt. Express 18(10), 10642–10649 (2010). [CrossRef] [PubMed]
  17. C. W. Carr, D. A. Cross, M. A. Norton, R. A. Negres, “The effect of laser pulse shape and duration on the size at which damage sites initiate and the implications to subsequent repair,” Opt. Express 19(S4), A859–A864 (2011). [CrossRef] [PubMed]
  18. R. A. Negres, G. M. Abdulla, D. A. Cross, Z. M. Liao, C. W. Carr, “Probability of growth of small damage sites on the exit surface of fused silica optics,” Opt. Express 20(12), 13030–13039 (2012). [CrossRef] [PubMed]
  19. R. A. Negres, M. A. Norton, D. A. Cross, C. W. Carr, “Growth behavior of laser-induced damage on fused silica optics under UV, ns laser irradiation,” Opt. Express 18(19), 19966–19976 (2010). [CrossRef] [PubMed]
  20. R. N. Raman, M. J. Matthews, J. J. Adams, S. G. Demos, “Monitoring annealing via CO(2) laser heating of defect populations on fused silica surfaces using photoluminescence microscopy,” Opt. Express 18(14), 15207–15215 (2010). [CrossRef] [PubMed]
  21. R. M. Brusasco, B. M. Penetrante, J. A. Butler, S. M. Maricle, and J. E. Peterson, “Co2-laser polishing for reduction of 351-nm surface damage initiation in fused silica,” in Laser-Induced Damage in Optical Materials: 2001 Proceedings, G. Exarhos, A. H. Guenther, K. L. Lewis, M. J. Soileau, and C. J. Stolz, eds. (2002), pp. 34–39.
  22. J. Bude, G. Guss, M. Matthews, M. L. Spaeth, “The effect of lattice temperature on surface damage in fused silica optics,” Proc. SPIE 6720, 672009 (2007). [CrossRef]
  23. P. A. Temple, W. H. Lowdermilk, D. Milam, “Carbon dioxide laser polishing of fused silica surfaces for increased laser-damage resistance at 1064 nm,” Appl. Opt. 21(18), 3249–3255 (1982). [CrossRef] [PubMed]
  24. X. Jiang, Y. Liu, H. Rao, and S. Fu, “Improve the laser damage resistance of fused silica by wet surface cleaning and optimized hf etch process,” in Pacific Rim Laser Damage 2013: Optical Materials for High Power Lasers, J. Shao, T. Jitsuno, and W. Rudolph, eds. (2013).
  25. X. Gao, G. Feng, J. Han, L. Zhai, “Investigation of laser-induced damage by various initiators on the subsurface of fused silica,” Opt. Express 20(20), 22095–22101 (2012). [CrossRef] [PubMed]
  26. X. Gao, G. Feng, J. Han, N. Chen, C. Tang, S. Zhou, “Investigation of laser-induced damage by nanoabsorbers at the surface of fused silica,” Appl. Opt. 51(13), 2463–2468 (2012). [CrossRef] [PubMed]
  27. K. Bien-Aimé, C. Belin, L. Gallais, P. Grua, E. Fargin, J. Néauport, I. Tovena-Pecault, “Impact of storage induced outgassing organic contamination on laser induced damage of silica optics at 351 nm,” Opt. Express 17(21), 18703–18713 (2009). [CrossRef] [PubMed]
  28. K. Bien-Aimé, J. Néauport, I. Tovena-Pecault, E. Fargin, C. Labrugère, C. Belin, M. Couzi, “Laser induced damage of fused silica polished optics due to a droplet forming organic contaminant,” Appl. Opt. 48(12), 2228–2235 (2009). [CrossRef] [PubMed]
  29. C. W. Carr, M. D. Feit, M. C. Nostrand, J. J. Adams, “Techniques for qualitative and quantitative measurement of aspects of laser-induced damage important for laser beam propagation,” Meas. Sci. Technol. 17(7), 1958–1962 (2006). [CrossRef]
  30. C. W. Carr, J. B. Trenholme, M. L. Spaeth, “Effect of temporal pulse shape on optical damage,” Appl. Phys. Lett. 90(4), 041110 (2007). [CrossRef]
  31. N. Shen, P. E. Miller, J. D. Bude, T. A. Laurence, T. I. Suratwala, W. A. Steele, M. D. Feit, L. L. Wong, “Thermal annealing of laser damage precursors on fused silica surfaces,” Opt. Eng. 51(12), 121817 (2012). [CrossRef]
  32. S. T. Yang, M. J. Matthews, S. Elhadj, V. G. Draggoo, S. E. Bisson, “Thermal transport in CO2 laser irradiated fused silica: In situ measurements and analysis,” J. Appl. Phys. 106(10), 103106 (2009). [CrossRef]
  33. R. M. Vignes, T. F. Soules, J. S. Stolken, R. R. Settgast, S. Elhadj, M. J. Matthews, “Thermomechanical modeling of laser-induced structural relaxation and deformation of glass: Volume changes in fused silica at high temperatures,” J. Am. Ceram. Soc. 96(1), 137–145 (2013). [CrossRef]
  34. A. Torres, V. Courtney, A. M. Caen, F. Vietor, A. Moran, and H. L. Kelly, “Annual water quality report 2012” (San Francisco Public Utilities Commission, San Francisco, 2012).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited