OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 5 — Mar. 10, 2014
  • pp: 5852–5858

Study of filamentation threshold in zinc selenide

Magali Durand, Aurélien Houard, Khan Lim, Anne Durécu, Olivier Vasseur, and Martin Richardson  »View Author Affiliations


Optics Express, Vol. 22, Issue 5, pp. 5852-5858 (2014)
http://dx.doi.org/10.1364/OE.22.005852


View Full Text Article

Enhanced HTML    Acrobat PDF (1103 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The possibility of creating filaments with laser wavelengths ranging from 800 nm to 2.4 µm was investigated using an OPA laser system. Zinc Selenide’s (ZnSe) unique characteristics – small band gap E g Z n S e = 2.67 e V and positive dispersion for this wavelength range – are well suited for filamentation study where multi-photon absorption can be achieved with two to six photons.

© 2014 Optical Society of America

OCIS Codes
(190.4180) Nonlinear optics : Multiphoton processes
(320.2250) Ultrafast optics : Femtosecond phenomena
(320.7110) Ultrafast optics : Ultrafast nonlinear optics

ToC Category:
Materials

History
Original Manuscript: January 24, 2014
Revised Manuscript: February 23, 2014
Manuscript Accepted: February 25, 2014
Published: March 5, 2014

Citation
Magali Durand, Aurélien Houard, Khan Lim, Anne Durécu, Olivier Vasseur, and Martin Richardson, "Study of filamentation threshold in zinc selenide," Opt. Express 22, 5852-5858 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-5-5852


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. H. Marburger, “Self-focusing: Theory,” Prog. Quantum Electron. 4, 35–110 (1975). [CrossRef]
  2. M. Sheik-Bahae, D. J. Hagan, E. W. Van Stryland, “Dispersion and band-gap scaling of the electronic Kerr effect in solids associated with two-photon absorption,” Phys. Rev. Lett. 65(1), 96–99 (1990). [CrossRef] [PubMed]
  3. A. Couairon, A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441(2-4), 47–189 (2007). [CrossRef]
  4. S. L. Chin, S. A. Hosseini, W. Liu, Q. Luo, F. Théberge, N. Aközbek, A. Becker, V. P. Kandidov, O. G. Kosareva, H. Schroeder, “The propagation of powerful femtosecond laser pulses in optical media: physics, applications, and new challenges,” Can. J. Phys. 83(9), 863–905 (2005). [CrossRef]
  5. B. Prade, M. Franco, A. Mysyrowicz, A. Couairon, H. Buersing, B. Eberle, M. Krenz, D. Seiffer, O. Vasseur, “Spatial mode cleaning by femtosecond filamentation in air,” Opt. Lett. 31(17), 2601–2603 (2006). [CrossRef] [PubMed]
  6. C. P. Hauri, W. Kornelis, F. W. Helbing, A. Heinrich, A. Couairon, A. Mysyrowicz, J. Biegert, U. Keller, “Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation,” Appl. Phys. B 79(6), 673–677 (2004). [CrossRef]
  7. M. Durand, A. Jarnac, A. Houard, Y. Liu, S. Grabielle, N. Forget, A. Durécu, A. Couairon, A. Mysyrowicz, “Self-guided propagation of ultrashort laser pulses in the anomalous dispersion region of transparent solids: a new regime of filamentation,” Phys. Rev. Lett. 110(11), 115003 (2013). [CrossRef]
  8. R. R. Alfano, S. L. Shapiro, “Observation of self-phase modulation and small-scale filaments in crystals and glasses,” Phys. Rev. Lett. 24, 592–594 (1970). [CrossRef]
  9. M. Durand, K. Lim, V. Jukna, E. McKee, M. Baudelet, A. Houard, M. Richardson, A. Mysyrowicz, A. Couairon, “Blueshifted continuum peaks from filamentation in the anomalous dispersion regime,” Phys. Rev. A 87, 043820 (2013). [CrossRef]
  10. S. A. Hosseini, Q. Luo, B. Ferland, W. Liu, N. Akozbek, G. Roy, S. L. Chin, “Effective length of filaments measurement using backscattered fluorescence from nitrogen molecules,” Appl. Phys. B 77, 697–702 (2003). [CrossRef]
  11. C. D’Amico, A. Houard, M. Franco, B. Prade, A. Mysyrowicz, A. Couairon, V. T. Tikhonchuk, “Conical forward THz emission from femtosecond-laser-beam filamentation in air,” Phys. Rev. Lett. 98(23), 235002 (2007). [CrossRef] [PubMed]
  12. J. Kasparian, R. Ackermann, Y.-B. André, G. Méchain, G. Méjean, B. Prade, P. Rohwetter, E. Salmon, K. Stelmaszczyk, J. Yu, A. Mysyrowicz, R. Sauerbrey, L. Wöste, J.-P. Wolf, “Electric events synchronized with laser filaments in thunderclouds,” Opt. Express 16(8), 5757–5763 (2008). [CrossRef] [PubMed]
  13. B. Forestier, A. Houard, I. Revel, M. Durand, Y.-B. André, B. Prade, A. Jarnac, J. Carbonnel, M. Le Nevé, J. C. de Miscault, B. Esmiller, D. Chapuis, A. Mysyrowicz, “Triggering, guiding and deviation of long air spark discharges with femtosecond laser filament,” AIP Adv. 2(1), 012151 (2012). [CrossRef]
  14. Z. A. Kudyshev, M. C. Richardson, N. M. Litchinitser, “Virtual hyperbolic metamaterials for manipulating radar signals in air,” Nat. Commun. 4, 2557 (2013). [CrossRef] [PubMed]
  15. Y. Liu, M. Durand, S. Chen, A. Houard, B. Prade, B. Forestier, A. Mysyrowicz, “Energy exchange between femtosecond laser filaments in air,” Phys. Rev. Lett. 105(5), 055003 (2010). [CrossRef] [PubMed]
  16. J. Liu, W. Li, H. Pan, H. Zeng, “Two-dimensional plasma grating by non-collinear femtosecond filament interaction in air,” Appl. Phys. Lett. 99(15), 151105 (2011). [CrossRef]
  17. X. Yang, J. Wu, Y. Peng, Y. Tong, P. Lu, L. Ding, Z. Xu, H. Zeng, “Plasma waveguide array induced by filament interaction,” Opt. Lett. 34(24), 3806–3808 (2009). [CrossRef] [PubMed]
  18. A. Brodeur, S. L. Chin, “Band-gap dependence of the ultrafast white-light continuum,” Phys. Rev. Lett. 80(20), 4406–4409 (1998). [CrossRef]
  19. A. Brodeur, S. L. Chin, “Ultrafast white-light continuum generation and self-focusing in transparent media,” J. Opt. Soc. Am. B 16(4), 637–650 (1999). [CrossRef]
  20. C. Nagura, A. Suda, H. Kawano, M. Obara, K. Midorikawa, “Generation and characterization of ultrafast white-light continuum in condensed media,” Appl. Opt. 41(18), 3735–3742 (2002). [CrossRef] [PubMed]
  21. S. Tzortzakis, B. Lamouroux, A. Chiron, M. Franco, B. Prade, A. Mysyrowicz, S. D. Moustaizis, “Nonlinear propagation of subpicosecond ultraviolet laser pulses in air,” Opt. Lett. 25(17), 1270–1272 (2000). [CrossRef] [PubMed]
  22. A. A. Said, M. Sheik-Bahae, D. J. Hagan, T. H. Wei, J. Wang, J. Young, E. W. Van Stryland, “Determination of bound-electronic and free-carrier nonlinearities in ZnSe, GaAs, CdTe, and ZnTe,” J. Opt. Soc. Am. B 9(3), 405–414 (1992). [CrossRef]
  23. H. Wenisch, K. Schüll, D. Hommel, G. Landwehr, D. Siche, H. Hartmann, “Molecular beam epitaxial growth and characterization of ZnSe on (001) ZnSe substrates and its application in light-emitting diodes,” Semicond. Sci. Technol. 11(1), 107–115 (1996). [CrossRef]
  24. Handbook of Optics, 3rd ed. (McGraw-Hill, 2009), Vol. 4.
  25. V. Y. Degoda, A. O. Sofienko, “Specific features of the luminescence and conductivity of zinc selenide on exposure to X-ray and optical excitation,” Semiconductors 44(5), 568–574 (2010). [CrossRef]
  26. M. V. Nazarov, “Cathodoluminescencedefectoscopy of ZnS and ZnSe crystals,” Mater. Sci. Eng. B 91–92, 349–352 (2002). [CrossRef]
  27. F. Théberge, W. Liu, P. T. Simard, A. Becker, S. L. Chin, “Plasma density inside a femtosecond laser filament in air: Strong dependence on external focusing,” Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 74(3), 036406 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited