OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 5 — Mar. 10, 2014
  • pp: 5895–5903

Photocurrent response of carbon nanotube–metal heterojunctions in the terahertz range

Yingxin Wang, Guowei Zhang, Lingbo Qiao, Jinquan Wei, Jia-Lin Zhu, Zhiqiang Chen, Ziran Zhao, and Jia-Lin Sun  »View Author Affiliations

Optics Express, Vol. 22, Issue 5, pp. 5895-5903 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (2710 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We investigate the optoelectronic properties of a carbon nanotube (CNT)–metal heterostructure in the terahertz range. On the basis of terahertz time-domain spectroscopy characterization of a double-walled CNT (DWNT) film, we present and analyze the photocurrent measurement for a DWNT–nickel heterojunction illuminated by continuous-wave terahertz radiation. A significant current across the junction directly induced by terahertz excitation is observed and a negative photoconductivity behavior is found to occur in the device. The photocurrent shows a linear response to the bias voltage and the illumination power within the examined range. These phenomena support the feasibility of using CNT–metal heterojunctions as novel terahertz detectors.

© 2014 Optical Society of America

OCIS Codes
(230.5160) Optical devices : Photodetectors
(040.2235) Detectors : Far infrared or terahertz
(160.4236) Materials : Nanomaterials

ToC Category:

Original Manuscript: December 6, 2013
Revised Manuscript: February 16, 2014
Manuscript Accepted: February 27, 2014
Published: March 6, 2014

Yingxin Wang, Guowei Zhang, Lingbo Qiao, Jinquan Wei, Jia-Lin Zhu, Zhiqiang Chen, Ziran Zhao, and Jia-Lin Sun, "Photocurrent response of carbon nanotube–metal heterojunctions in the terahertz range," Opt. Express 22, 5895-5903 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1, 97–105 (2007). [CrossRef]
  2. W. L. Chan, J. Deibel, D. M. Mittleman, “Imaging with terahertz radiation,” Rep. Prog. Phys. 70, 1325–1379 (2007). [CrossRef]
  3. F. Sizov, “THz radiation sensors,” Opto-Electron. Rev. 18, 10–36 (2010). [CrossRef]
  4. Y. Wang, Z. Zhao, Z. Chen, K. Kang, “Calibration of a thermal detector for pulse energy measurement of terahertz radiation,” Opt. Lett. 37, 4395–4397 (2012). [CrossRef] [PubMed]
  5. R. A. Hadi, H. Sherry, J. Grzyb, Y. Zhao, W. Föster, H. M. Keller, A. Cathelin, A. Kaiser, U.R. Pfeiffer, “A 1 k-Pixel Video Camera for 0.7–1.1 Terahertz Imaging Applications in 65-nm CMOS,” IEEE J. Solid-State Circuit 47, 2999–3012 (2012). [CrossRef]
  6. S. Boppel, A. Lisauskas, A. Max, V. Krozer, H. G. Roskos, “CMOS detector arrays in a virtual 10-kilopixel camera for coherent terahertz real-time imaging,” Opt. Lett. 37, 536–538 (2012). [CrossRef] [PubMed]
  7. Y. Kawano, T. Uchida, K. Ishibashi, “Terahertz sensing with a carbon nanotube/two-dimensional electron gas hybrid transistor,” Appl. Phys. Lett. 95,083123 (2009). [CrossRef]
  8. M. S. Vitiello, L. Viti, L. Romeo, D. Ercolani, G. Scalari, J. Faist, F. Beltram, L. Sorba, A. Tredicucci, “Semiconductor nanowires for highly sensitive, room-temperature detection of terahertz quantum cascade laser emission,” Appl. Phys. Lett. 100,241101 (2012). [CrossRef]
  9. L. Vicarelli, M. S. Vitiello, D. Coquillat, A. Lombardo, A. C. Ferrari, W. Knap, M. Polini, V. Pellegrini, A. Tredicucci, “Graphene field-effect transistors as room-temperature terahertz detectors,” Nat. Mater. 11, 865–871 (2012). [CrossRef] [PubMed]
  10. P. Avouris, M. Freitag, V. Perebeinos, “Carbon-nanotube photonics and optoelectronics,” Nat. Photonics 2, 341–350 (2008). [CrossRef]
  11. J.-L. Sun, J. Wei, J.-L. Zhu, D. Xu, X. Liu, H. Sun, D.-H. Wu, N.-L. Wu, “Photoinduced currents in carbon nanotube/metal heterojunctions,” Appl. Phys. Lett. 88,131107 (2006). [CrossRef]
  12. J. Wei, J.-L. Sun, J.-L. Zhu, K. Wang, Z. Wang, J. Luo, D. Wu, A. Cao, “Carbon nanotube macrobundles for light sensing,” Small 2, 988–993 (2006). [CrossRef] [PubMed]
  13. S. Lu, B. Panchapakesan, “Photoconductivity in single wall carbon nanotube sheets,” Nanotechnology 17, 1843–1850 (2006). [CrossRef]
  14. D.-H. Lien, W.-K. Hsu, H.-W. Zan, N.-H. Tai, C.-H. Tsai, “Photocurrent Amplification at Carbon Nanotube–Metal Contacts,” Adv. Mater. 18, 98–103 (2006). [CrossRef]
  15. G. Fedorov, A. Kardakova, I. Gayduchenko, I. Charayev, B. M. Voronov, M. Finkel, T. M. Klapwijk, S. Morozov, M. Presniakov, I. Bobrinetskiy, R. Ibragimov, G. Goltsman, “Photothermoelectric response in asymmetric carbon nanotube devices exposed to sub-terahertz radiation,” Appl. Phys. Lett. 103,181121 (2013). [CrossRef]
  16. J. Wei, H. Zhu, Y. Li, B. Chen, Y. Jia, K. Wang, Z. Wang, W. Liu, J. Luo, M. Zheng, D. Wu, Y. Zhu, B. Wei, “Ultrathin single-layered membranes from double-walled carbon nanotubes,” Adv. Mater. 18, 1695–1700 (2006). [CrossRef]
  17. J. Wei, Y. Jia, Q. Shu, Z. Gu, K. Wang, D. Zhuang, G. Zhang, Z. Wang, J. Luo, A. Cao, D. Wu, “Double-walled carbon nanotube solar cells,” Nano Lett. 7, 2317–2321 (2007). [CrossRef] [PubMed]
  18. W. Gao, Y. Wang, Z. Zhao, “Development of the data acquisition and control system for a portable THz time-domain spectrometer,” Proc. SPIE 8909, 89090O (2013). [CrossRef]
  19. S. Kumar, N. Kamaraju, A. Moravsky, R. O. Loutfy, M. Tondusson, E. Freysz, A. K. Sood, “Terahertz time domain spectroscopy to detect low-frequency vibrations of double-walled carbon nanotubes,” Eur. J. Inorg. Chem. 2010, 4363–4366 (2010). [CrossRef]
  20. T. D. Dorney, R. G. Baraniuk, D. M. Mittleman, “Material parameter estimation with terahertz time-domain spectroscopy,” J. Opt. Soc. Am. A 18, 1562–1571 (2001). [CrossRef]
  21. I. Pupeza, R. Wilk, M. Koch, “Highly accurate optical material parameter determination with THz time-domain spectroscopy,” Opt. Express 15, 4335–4350 (2007). [CrossRef] [PubMed]
  22. S. Maine, C. Koechlin, S. Rennesson, J. Jaeck, S. Salort, B. Chassagne, F. Pardo, J.-L. Pelouard, R. Haïar, “Complex optical index of single wall carbon nanotube films from the near-infrared to the terahertz spectral range,” Appl. Opt. 51, 3031–3035 (2012). [CrossRef] [PubMed]
  23. I. Maeng, C. Kang, S. J. Oh, J.-H. Son, K. H. An, Y. H. Lee, “Terahertz electrical and optical characteristics of double-walled carbon nanotubes and their comparison with single-walled carbon nanotubes,” Appl. Phys. Lett. 90,051914 (2007). [CrossRef]
  24. C.-S. Yang, C.-H. Chang, M.-H. Lin, P. Yu, O. Wada, C.-L. Pan, “THz conductivities of indium-tin-oxide nanowhiskers as a graded-refractive-index structure,” Opt. Express 20, A441–A451 (2012). [CrossRef] [PubMed]
  25. T. D. Nguyen, S. Liu, M. D. Lima, S. Fang, R. H. Baughman, A. Nahata, Z. V. Vardeny, “Terahertz surface plasmon polaritons on freestanding multi-walled carbon nanotube aerogel sheets,” Opt. Mater. Express 2, 782–788 (2012). [CrossRef]
  26. I. A. Levitsky, W. B. Euler, “Photoconductivity of single-wall carbon nanotubes under continuous-wave near-infrared illumination,” Appl. Phys. Lett. 83, 1857–1859 (2003). [CrossRef]
  27. J.-L. Zhu, G. Zhang, J. Wei, J.-L. Sun, “Negative and positive photoconductivity modulated by light wavelengths in carbon nanotube film,” Appl. Phys. Lett. 101,123117 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited