OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 5 — Mar. 10, 2014
  • pp: 5927–5936

Design and numerical analysis of surface plasmon-enhanced fin Ge-Si light-emitting diode

Intae Jeong, Jooseong Kwon, Changsoon Kim, and Young June Park  »View Author Affiliations

Optics Express, Vol. 22, Issue 5, pp. 5927-5936 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (2557 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Heavily-doped strained germanium (Ge) can emit light efficiently thanks to its pseudo direct band gap characteristic. This makes Ge a good candidate for on-chip monolithic light sources in silicon (Si) photonics systems. We propose fin-shaped Ge-Si heterojunction light-emitting diode (LED) with metal gates, which can enhance light emission by coupling with surface plasmon resonant modes and modulate light emission from the LED. We verify these two aspects through numerical analysis and device simulations. We develop the method to find the optimal device structure and specific device dimensions to maximize the spontaneous emission rate enhancement. Also we find that the LED can be modulated by a gate voltage bias.

© 2014 Optical Society of America

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(130.5990) Integrated optics : Semiconductors
(230.3670) Optical devices : Light-emitting diodes
(240.6680) Optics at surfaces : Surface plasmons
(260.5740) Physical optics : Resonance
(250.5403) Optoelectronics : Plasmonics

ToC Category:

Original Manuscript: December 16, 2013
Revised Manuscript: February 14, 2014
Manuscript Accepted: February 20, 2014
Published: March 6, 2014

Intae Jeong, Jooseong Kwon, Changsoon Kim, and Young June Park, "Design and numerical analysis of surface plasmon-enhanced fin Ge-Si light-emitting diode," Opt. Express 22, 5927-5936 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. Tsybeskov, D. J. Lockwood, M. Ichikawa, “Silicon photonics: CMOS going optical,” Proc. IEEE 97(7), 1161–1165 (2009). [CrossRef]
  2. R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1678–1687 (2006). [CrossRef]
  3. Z. Fang, C. Z. Zhao, “Recent progress in silicon photonics: a review,” ISRN Opt. 2012, 428690 (2012). [CrossRef]
  4. G. T. Reed, Silicon Photonics: The State of the Art (John Wiley, 2008).
  5. G. T. Reed, G. Mashanovich, F. Y. Gardes, D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010). [CrossRef]
  6. L. Liao, D. Samara-Rubio, M. Morse, A. Liu, D. Hodge, D. Rubin, U. Keil, T. Franck, “High speed silicon Mach-Zehnder modulator,” Opt. Express 13(8), 3129–3135 (2005). [CrossRef] [PubMed]
  7. J. Michel, J. Liu, L. C. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photonics 4(8), 527–534 (2010). [CrossRef]
  8. J. Leuthold, C. Koos, W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4(8), 535–544 (2010). [CrossRef]
  9. A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express 14(20), 9203–9210 (2006). [CrossRef] [PubMed]
  10. G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, J. Bowers, “III-V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photonics Rev. 4(6), 751–779 (2010). [CrossRef]
  11. J. Liu, X. Sun, D. Pan, X. Wang, L. C. Kimerling, T. L. Koch, J. Michel, “Tensile-strained, n-type Ge as a gain medium for monolithic laser integration on Si,” Opt. Express 15(18), 11272–11277 (2007). [CrossRef] [PubMed]
  12. C. W. Liu, T. Cheng, Y. Chen, S. Jan, C. Chen, S. Chan, Y. Nien, Y. Yamamoto, B. Tillack, “Direct and indirect radiative recombination from Ge,” Thin Solid Films 520(8), 3249–3254 (2012). [CrossRef]
  13. R. E. Camacho-Aguilera, Y. Cai, N. Patel, J. T. Bessette, M. Romagnoli, L. C. Kimerling, J. Michel, “An electrically pumped germanium laser,” Opt. Express 20(10), 11316–11320 (2012). [CrossRef] [PubMed]
  14. X. Sun, J. Liu, L. C. Kimerling, J. Michel, “Room-temperature direct bandgap electroluminesence from Ge-on-Si light-emitting diodes,” Opt. Lett. 34(8), 1198–1200 (2009). [CrossRef] [PubMed]
  15. S. L. Cheng, J. Lu, G. Shambat, H. Y. Yu, K. Saraswat, J. Vuckovic, Y. Nishi, “Room temperature 1.6 microm electroluminescence from Ge light emitting diode on Si substrate,” Opt. Express 17(12), 10019–10024 (2009). [CrossRef] [PubMed]
  16. F. Zhang, V. H. Crespi, P. Zhang, “Prediction that uniaxial tension along <111> produces a direct band gap in germanium,” Phys. Rev. Lett. 102(15), 156401 (2009). [CrossRef] [PubMed]
  17. J. Liu, X. Sun, R. Camacho-Aguilera, Y. Cai, L. C. Kimerling, and J. Michel, “Monolithic Ge-on-Si lasers for integrated photonics,” presented at the IEEE 7th International Conference on Group IV Photonics, Beijing, China, 1–3 Sept. 2010.
  18. S. M. Sze and K. Kwok, Physics of Semiconductor Devices, 3rd ed. (John Wiley, 2007).
  19. S. Pillai, K. R. Catchpole, T. Trupke, G. Zhang, J. Zhao, M. A. Green, “Enhanced emission from Si-based light-emitting diodes using surface plasmons,” Appl. Phys. Lett. 88(16), 161102 (2006). [CrossRef]
  20. D. M. Schaadt, B. Feng, E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86(6), 063106 (2005). [CrossRef]
  21. K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004). [CrossRef] [PubMed]
  22. E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).
  23. K. Nozaki, S. Kita, T. Baba, “Room temperature continuous wave operation and controlled spontaneous emission in ultrasmall photonic crystal nanolaser,” Opt. Express 15(12), 7506–7514 (2007). [CrossRef] [PubMed]
  24. P. Anger, P. Bharadwaj, L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96(11), 113002 (2006). [CrossRef] [PubMed]
  25. M. J. Süess, R. Geiger, R. A. Minamisawa, G. Schiefler, J. Frigerio, D. Chrastina, G. Isella, R. Spolenak, J. Faist, H. Sigg, “Analysis of enhanced light emission from highly strained germanium microbridgers,” Nat. Photonics 7(6), 466–472 (2013). [CrossRef]
  26. J. R. Lakowicz, “Radiative decay engineering: biophysical and biomedical applications,” Anal. Biochem. 298(1), 1–24 (2001). [CrossRef] [PubMed]
  27. H. T. Miyazaki, Y. Kurokawa, “Squeezing visible light waves into a 3-nm-thick and 55-nm-long plasmon cavity,” Phys. Rev. Lett. 96(9), 097401 (2006). [CrossRef] [PubMed]
  28. L. Novotny and B. Hecht, Principles of Nano-optics (Cambridge University, 2006).
  29. K. Joulain, R. Charminati, J. Mulet, J. Greffet, “Definition and measurement of the local density of electromagnetic states close to an interface,” Phys. Rev. B 68(24), 245405 (2003). [CrossRef]
  30. I. Jeoug, C. Kim, and Y. J. Park, “Numerical analysis of surface-plasmon-enhanced light emission in fin silicon light-emitting diode,” presented at the IEEE 7th International Conference on Group IV Photonics, Beijing, China, 1–3 Sept. 2010.
  31. M. S. Tomas, “Green function for multilayers: Light scattering in planar cavities,” Phys. Rev. A 51(3), 2545–2559 (1995). [CrossRef] [PubMed]
  32. J. E. Sipe, “New green-function formalism for surface optics,” J. Opt. Soc. Am. B 4(4), 481–489 (1987). [CrossRef]
  33. J. Kwon, I. Jeong, S. Choi, and Y. J. Park, “An embedded modulation of GeSi fin LED – A simulation study,” presented at the 10th International Workshop on Compact Modeling, Yokohama, Japan, 22 Jan. 2013.
  34. S. K. Kim, J. H. Han, G. H. Kim, C. S. Hwang, “Investigation on the growth initiation of Ru thin films by atomic layer deposition,” Chem. Mater. 22(9), 2850–2856 (2010). [CrossRef]
  35. G. Choi, S. K. Kim, S. Y. Lee, W. Y. Park, M. Seo, B. J. Choi, C. S. Hwang, “Atomic layer deposition of TiO2 films on Ru buffered TiN electrode for capacitor applications,” J. Electrochem. Soc. 156(7), G71–G77 (2009). [CrossRef]
  36. L. M. Brekhovskikh, Waves in Layered Media, 2nd ed. (Academic, 1980).
  37. S. W. Chang, C. Y. Ni, S. L. Chuang, “Theory for bowtie plasmonic nanolasers,” Opt. Express 16(14), 10580–10595 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited