OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 5 — Mar. 10, 2014
  • pp: 5950–5961

All-optically reconfigurable and tunable fiber surface grating for in-fiber devices: a wideband tunable filter

Jianhui Yu, Yuqi Han, Hankai Huang, Haozi Li, Vincent K. S. Hsiao, Weiping Liu, Jieyuan Tang, Huihui Lu, Jun Zhang, Yunhan Luo, Yongchun Zhong, Zhigang Zang, and Zhe Chen  »View Author Affiliations


Optics Express, Vol. 22, Issue 5, pp. 5950-5961 (2014)
http://dx.doi.org/10.1364/OE.22.005950


View Full Text Article

Enhanced HTML    Acrobat PDF (1785 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A fiber surface grating (FSG) formed from a photosensitive liquid crystal hybrid (PLCH) film overlaid on a side-polished fiber (SPF) is studied and has been experimentally shown to be able to function as an all-optically reconfigurable and tunable fiber device. The device is all-optically configured to be a short period fiber surface grating (SPFSG) when a phase mask is used, and then reconfigured to be a long period FSG (LPFSG) when an amplitude mask is used. Experimental results show that both the short and long period FSGs can function as an optically tunable band-rejection filter and have different performances with different pump power and different configured period of the FSG. When configured as a SPFSG, the device can achieve a high extinction ratio (ER) of 21.5dB and a wideband tunability of 31nm are achieved. When configured as a LPFSG, the device can achieve an even higher ER of 23.4dB and a wider tunable bandwidth of 60nm. Besides these tunable performances of the device, its full width at half maximum (FWHM) can also be optically tuned. The reconfigurability and tunability of the fiber device open up possibilities for other all-optically programmable and tunable fiber devices.

© 2014 Optical Society of America

OCIS Codes
(060.2310) Fiber optics and optical communications : Fiber optics
(230.1150) Optical devices : All-optical devices
(230.3720) Optical devices : Liquid-crystal devices

ToC Category:
Fiber Optics

History
Original Manuscript: December 23, 2013
Revised Manuscript: February 19, 2014
Manuscript Accepted: February 24, 2014
Published: March 6, 2014

Citation
Jianhui Yu, Yuqi Han, Hankai Huang, Haozi Li, Vincent K. S. Hsiao, Weiping Liu, Jieyuan Tang, Huihui Lu, Jun Zhang, Yunhan Luo, Yongchun Zhong, Zhigang Zang, and Zhe Chen, "All-optically reconfigurable and tunable fiber surface grating for in-fiber devices: a wideband tunable filter," Opt. Express 22, 5950-5961 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-5-5950


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. L. Lowder, J. D. Gordon, S. M. Schultz, R. H. Selfridge, “Volatile organic compound sensing using a surface-relief D-shaped fiber Bragg grating and a polydimethylsiloxane layer,” Opt. Lett. 32(17), 2523–2525 (2007). [CrossRef] [PubMed]
  2. G. Quero, A. Crescitelli, D. Paladino, M. Consales, A. Buosciolo, M. Giordano, A. Gutolo, A. Cusano, “Evanescent wave long-period fiber grating within D-shaped optical fibers for high sensitivity refractive index detection,” Sens. and Act. B: Chem. 152(2), 196–205 (2011). [CrossRef]
  3. B. Lee, “Review of the present status of optical fiber sensor,” Opt. Fiber Technol. 9(2), 57–79 (2003). [CrossRef]
  4. Y. Lai, W. Zhang, L. Zhang, J. A. R. Williams, I. Bennion, “Optically tunable fiber grating transmission filters,” Opt. Lett. 28(24), 2446–2448 (2003). [CrossRef] [PubMed]
  5. A. A. Abramov, B. J. Eggleton, J. A. Rogers, R. P. Espindola, A. Hale, R. S. Windeler, T. A. Strasser, “Electrically tunable efficient broad-band fiber filter,” IEEE Photon. Technol. Lett. 11(4), 445–447 (1999). [CrossRef]
  6. G. A. Ball, W. W. Morey, “Continuously tunable single-mode erbium fiber laser,” Opt. Lett. 17(6), 420–422 (1992). [CrossRef] [PubMed]
  7. J. Archambault, S. G. Grubb, “Fiber grating in Lasers and Amplifiers,” J. Lightwave Technol. 15(8), 1378–1390 (1997). [CrossRef]
  8. R. Lausten, P. Rochon, M. Ivanov, P. Cheben, S. Janz, P. Desjardins, J. Ripmeester, T. Siebert, A. Stolow, “Optically reconfigurable azobenzene polymer-based fiber Bragg filter,” Appl. Opt. 44(33), 7039–7042 (2005). [CrossRef] [PubMed]
  9. J. H. Liou, T. H. Chang, T. Lin, C. P. Yu, “Reversible photo-induced long-period fiber gratings in photonic liquid crystal fibers,” Opt. Express 19(7), 6756–6761 (2011). [CrossRef] [PubMed]
  10. M. Asobe, T. Ohara, I. Yokohama, T. Kaino, “Fabrication of Bragg grating in chalocogenide glass fiber using the transverse holographic method,” Electron. Lett. 32(17), 1611–1613 (1996). [CrossRef]
  11. Y. Luo, Z. Li, R. Zheng, R. Chen, Q. Yan, Q. Zhang, G. Peng, G. Zou, H. Ming, B. Zhu, “Birefringent azopolymer long period fiber gratings induced by 523nm polarized laser,” Opt. Commun. 282(12), 2348–2353 (2009). [CrossRef]
  12. Z. Li, V. K. S. Hsiao, Z. Chen, J. Tang, F. Zhao, H. Wang, “Optically tunable fiber Bragg grating,” IEEE Photon. Technol. Lett. 22(15), 1123–1125 (2010). [CrossRef]
  13. V. K. S. Hsiao, Y. B. Zheng, B. K. Juluri, T. J. Huang, “Ligh-driven plasmonic switches based on Au nanodisk array and photoresponsive liquid crystals,” Adv. Mater. 20(18), 3528–3532 (2008). [CrossRef]
  14. V. K. S. Hsiao, C. Y. Ko, “Light-controllable photoresponsive liquid-crystal photonic crystal fiber,” Opt. Express 16(17), 12670–12676 (2008). [CrossRef] [PubMed]
  15. W. Fu, V. K. S. Hsiao, J. Tang, M. Wu, Z. Chen, “All fiber-optic sensing of light using side-polished fiber overlaid with photoresponsive liquid crystals,” Sens. and Act. B: Chem. 156(1), 423–427 (2011). [CrossRef]
  16. J. Yu, H. Li, V. K. S. Hsiao, W. Liu, J. Tang, Y. Zhai, Y. Du, J. Zhang, Y. Xiao, Z. Chen, “A fiber-optic violet sensor by using the surface gating formed by a photoresponsive hybrid liquid crystal film on side-polished fiber,” Meas. Sci. Technol. 24(9), 094019 (2013). [CrossRef]
  17. V. K. S. Hsiao, Z. Li, Z. Chen, P. C. Peng, J. Tang, “Optically controllable side-polished fiber attenuator with photoresponsive liquid crystal overlay,” Opt. Express 17(22), 19988–19995 (2009). [CrossRef] [PubMed]
  18. H. S. Jang, K. N. Park, J. P. Kim, S. J. Sim, O. J. Kwon, Y. G. Han, K. S. Lee, “Sensitive DNA biosensor based on a long-period grating formed on the side-polished fiber surface,” Opt. Express 17(5), 3855–3860 (2009). [CrossRef] [PubMed]
  19. Z. Chen, V. K. S. Hsiao, X. Li, Z. Li, J. Yu, J. Zhang, “Optically tunable microfiber-knot resonator,” Opt. Express 19(15), 14217–14222 (2011). [CrossRef] [PubMed]
  20. K. T. Kim, N. I. Moon, H. K. Kim, “A fiber-optic UV sensor based on a side-polished single mode fiber covered with azobenzene dye-doped polycarbonate,” Sens. and Act. A: Physical 160(1-2), 19–21 (2010). [CrossRef]
  21. H. Kim, W. Shin, T. Ahn, “UV sensor based on photomechanically functional polymer-coated FBG,” IEEE Photon. Technol. Lett. 22(19), 1404–1406 (2010). [CrossRef]
  22. J. Tang, Z. Chen, R. Fan, J. Yu, J. Zhang, “Optical fiber sensors based on fiber side polishing technique to measure the concentration of acetic acid solution,” Proc. SPIE 7853, 78532S (2010). [CrossRef]
  23. Z. Chen, J. Tang, Y. Zhong, J. Zhang, S. Li, “Side polished fiber Bragg grating sensor for simultaneous measurement of refractive index and temperature,” Proc. SPIE 7753, 77538K (2011). [CrossRef]
  24. J. Yu, X. Li, Y. Du, J. Zhang, Z. Chen, “Study of photorefractive properties of liquid crystal hybrid thin film by side polished fiber sensor,” Proc. SPIE 8351, 835122 (2012). [CrossRef]
  25. Z. Li, Z. Chen, V. K. S. Hsiao, J. Y. Tang, F. Zhao, S. J. Jiang, “Optically tunable chirped fiber Bragg grating,” Opt. Express 20(10), 10827–10832 (2012). [CrossRef] [PubMed]
  26. H. Yu, T. Ikeda, “Photocontrollable liquid-crystalline actuators,” Adv. Mater. 23(19), 2149–2180 (2011). [CrossRef] [PubMed]
  27. A. Sobolewska, J. Zawada, S. Bartkiewicz, Z. Galewski, “Mechanism of photochemical phase transition of single component phototropic liquid crystals studied by means of holographic grating recording,” J. Phys. Chem. 117, 10051–10058 (2013).
  28. K. O. Hill, G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15(8), 1263–1276 (1997). [CrossRef]
  29. D. B. Stegall, T. Erdogan, “Leaky cladding mode propagation in long-period fiber grating devices,” IEEE Photon. Technol. Lett. 11(3), 343–345 (1999). [CrossRef]
  30. C. P. Pollock and M. Lipson, Integrated Photonics (Boston & Dordrecht & London, 1997) Chap. 11.
  31. M. Wu, C. Chu, M. Cheng, V. K. S. Hsiao, “Reversible phase transition and rapid switching of azobenzen-doped cholesteric liquid cystals with a single laser,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 557(1), 176–189 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited